

Using Oracle Real Application Clusters (RAC)
DataDirect Connect® for ODBC

Introduction

In today's e-business on-demand environment, more companies are turning
to a Grid computing infrastructure for distributed computing and data
resources such as processing, network bandwidth, and storage. Grids allow
companies to pool available resources for scalability and high availability.
Built on Oracle Parallel Server (OPS) architecture, Oracle introduced Real
Application Clusters (RAC) with Oracle 9i. Oracle RAC also is a key part of
the Oracle 10g release. Oracle RAC allows a single physical Oracle database
to be accessed by concurrent instances of Oracle running across several
different CPUs.

An Oracle RAC system is composed of a group of independent servers, or
nodes, that cooperate as a single system as shown in Figure 1. These nodes
have a single view of the distributed cache memory for the entire database
system.

Figure 1: Oracle RAC System
ODBC Applications Using

DataDirect Connect for ODBC Driver

Shared Storage System

Oracle RAC
Nodes

A cluster architecture, such as Oracle RAC, provides applications access to
more horsepower when needed, while allowing computing resources to be
used for other applications when database resources are not as heavily
required. For example, in the event of a sudden increase in traffic, an Oracle
RAC system can distribute the load over many nodes, a feature referred to as
load balancing.

U S I N G O R A C L E R E A L A P P L I C A T I O N C L U S T E R S (R A C)

2 O F 1 1 D A T A D I R E C T T E C H N O L O G I E S J U L Y 2 0 0 4

In addition, an Oracle RAC system can protect against computer failures
caused by unexpected hardware failures and operating system or server
crashes, as well as processing loss caused by planned maintenance. When a
node failure occurs, connection attempts can fail over to other nodes in the
cluster, which assume the work of the failed node. When connection failover
occurs and a service connection is redirected to another node, users can
continue to access the service, unaware that it is now provided from a
different node.

This document explains how you can take advantage of Oracle RAC features
such as load balancing and connection failover using the DataDirect
Connect® for ODBC Oracle drivers to connect your data critical applications to
data.

Connecting to an Oracle Real Application Clusters (RAC) System

Connecting to an Oracle RAC system is similar to connecting to a single
instance of an Oracle database. When connecting to a single Oracle
database instance, you specify either the SID or ServiceName of the instance
to which you want to connect in the connection string. For example, the
following connection string establishes a connection to the database instance
Accting1:

"Host=server1;Port=1521;ServiceName=Accting1"

In a RAC environment, multiple Oracle instances share the same physical
data. In addition to the SID or ServiceName for each Oracle instance in the
Oracle RAC system, a ServiceName exists for the entire Oracle RAC system.
When an application uses the Oracle RAC system's ServiceName, the
Oracle RAC system appears to be a single Oracle instance to the application.
For example, the following connection string establishes a connection to an
Oracle instance in the Oracle RAC system named Accounting:

"Host=server1;Port=1521;ServiceName=Accounting"

The specific instance that is connected to is determined by a number of
factors, including which instances are available and the load on those
instances. Typically, the application does not need to know which instance to
which it is connected.

U S I N G O R A C L E R E A L A P P L I C A T I O N C L U S T E R S (R A C)

D A T A D I R E C T T E C H N O L O G I E S J U L Y 0 4 3 O F 1 1

Failover

Oracle RAC systems provide two methods of failover to provide reliable
access to data:

 Connection failover. If a connection failure occurs at connect time,
the application can fail over the connection to another active node in
the cluster. Connection failover ensures that an open route to your
data is always available, even when server downtime occurs.

 Transparent Application Failover (TAF). If a communication link
failure occurs after a connection is established, the connection fails
over to another active node. Any disrupted transactions are rolled
back, and session properties and server-side program variables are
lost. In some cases, if the statement executing at the time of the
failover is a Select statement, that statement may be automatically
re-executed on the new connection with the cursor positioned on the
row on which it was positioned prior to the failover.

Both connection failover and TAF provide a connection retry feature that
allows a connection to be retried automatically until a connection with another
RAC node is successfully re-established.

The primary difference between connection failover and TAF is that the
former method provides protection for connections at connect time and the
latter method provides protection for connections that have already been
established. Also, because the state of the transaction must be stored at all
times, TAF requires more performance overhead than connection failover.

Connection Failover

Enabling connection failover allows a driver to connect to another node if a
connection attempt on one node fails. When an application requests a
connection to an Oracle database server through the driver, the driver does
not connect to the database server directly. Instead, the driver sends a
connection request to a listener process, which forwards the request to the
appropriate Oracle database instance. In an Oracle RAC system, each active
Oracle database instance in the RAC system registers with each listener
configured for the Oracle RAC. For example, if we look at the Oracle RAC
Nodes A, B, and C in Figure 2, Instances A, B, and C are registered with
Listeners A, B, and C. If the service name in the connection request specifies
the RAC system database name, the requested listener selects one of the
registered instances to forward the connection request to, based on the load
each of the instances is experiencing. For example, if Instances A and B are
operating under a heavy load, a connection request to Listener A results in
the connection being forwarded to Instance C.

U S I N G O R A C L E R E A L A P P L I C A T I O N C L U S T E R S (R A C)

4 O F 1 1 D A T A D I R E C T T E C H N O L O G I E S J U L Y 2 0 0 4

Figure 2: Connection Routing in an Oracle RAC System

A B
Listener A

Instance A

Listener B

Instance B

C
Listener C

Instance C

ODBC Application

Shared Storage System

Because the requested listener selects from a set of active instances in the
RAC system to forward connection requests to, it should not route the
connection request to an instance that is not running. You may think that
connection failover is not needed in an Oracle RAC system; however, if the
requested listener is down or the timing of an instance going down is such
that the requested listener is not yet aware that an instance is down, the
connection request can fail.

The connection failover feature provided by the DataDirect Connect for ODBC
Oracle drivers handles the case where the requested listener or the server
selected by the listener is down by allowing you to specify multiple listeners to
which to connect. For example, as shown in Figure 3, if Listener A is down,
the DataDirect Connect for ODBC drivers can be configured to try Listener B,
and then Listener C.

U S I N G O R A C L E R E A L A P P L I C A T I O N C L U S T E R S (R A C)

D A T A D I R E C T T E C H N O L O G I E S J U L Y 0 4 5 O F 1 1

Figure 3: Oracle RAC with Connection Failover

A B
Listener A

Instance A

Listener B

Instance B

C
Listener C

Instance C

Shared Storage System

ODBC Application Using
DataDirect Connect for ODBC Driver

1 2 3

Connection failover provides protection for new connections only and does
not preserve states for transactions or queries, so your application needs to
provide failure recovery for transactions and queries.

The following example shows a connection string that enables connection
failover with two alternate servers for the DataDirect Connect for ODBC Oracle
Wire Protocol driver:

"DSN=AcctOracleServer;
AlternateServers=(HostName=AccountOracleServer:PortNumber=1521:
SID=Accounting, HostName=255.201.11.24:PortNumber=1522:
ServiceName=ABackup.NA.MyCompany)"

Transparent Application Failover (TAF)

With TAF, if a communication link failure occurs after a connection is
established, the connection is moved to another active Oracle RAC node in
the cluster without the application having to re-establish the connection. For
example, suppose you have the Oracle RAC environment shown in Figure 3
with multiple connections to Oracle RAC nodes: A, B, and C. As shown in the
first case, connections are distributed among the nodes in an Oracle RAC
system.

U S I N G O R A C L E R E A L A P P L I C A T I O N C L U S T E R S (R A C)

6 O F 1 1 D A T A D I R E C T T E C H N O L O G I E S J U L Y 2 0 0 4

Figure 4: Transparent Application Failover (TAF)

Connections to Oracle Database
Instances

Connections Switched to
Available Oracle Database
Instances

Connections

A B C A B C

When a communication link failure occurs between an Oracle node and the
application as shown in the second case, the driver automatically switches
the connection to another available node.

When a user session fails over to an alternate RAC node, the following items
are not persisted to the failover node and must be reinitialized by the
application:

 In-use stored procedures

 Application changes to session state

 In-flight "write" transactions (local transactions doing database updates)

 Global transactions

Although Oracle documentation refers to this functionality as transparent, the
preceding list shows that it is not completely transparent to an application.
The application programmer must include code to handle the necessary
“clean-up” caused by rolled back transactions or lost session states. Because
of these restrictions, the situations where application failover is beneficial
when implemented by the driver are limited.

Applications can perform a failover using the DataDirect Connect for ODBC
Oracle drivers by performing the following steps:

1. Catch the communication error exception generated by the driver.

2. Take the necessary steps to deal with current transactions that were
rolled back.

3. Re-establish the connection to the server.

U S I N G O R A C L E R E A L A P P L I C A T I O N C L U S T E R S (R A C)

D A T A D I R E C T T E C H N O L O G I E S J U L Y 0 4 7 O F 1 1

4. Re-initialize the session state.

5. Re-run any transaction that was rolled back.

To make it easy for applications to detect when the connection with the
server is lost, all communication error exceptions thrown by the DataDirect
Connect for ODBC drivers have a SQL state that begins with 08.

Oracle’s TAF implementation in their OCI ODBC driver performs Step 3 in
the preceding list for the application and may perform Step 5 for the
application if the only operation in the transaction is a Select statement.

Connection Retry

DataDirect Connect for ODBC drivers provide a connection retry feature that
works with connection failover. You can customize the driver to attempt to
reconnect a certain number of times and at a certain time interval.
Connection retry can be used in environments that have only one server or
be used as a complementary feature in connection failover scenarios with
multiple servers.

Example 1: The following connection string:

"DSN=AcctOracleServer;
AlternateServers=(HostName=AccountOracleServer:PortNumber=1521:
SID=Accounting, HostName=255.201.11.24:PortNumber=1522:
ServiceName=ABackup.NA.MyCompany);ConnectionRetryCount=10;
ConnectionRetryDelay=10"

instructs the Oracle Wire Protocol driver to cycle through the list of servers
(the primary server and alternate servers) up to ten more times if the driver
was unable to establish a connection to any of the servers in the list during
the initial pass. The driver waits ten seconds before it cycles through the list
of servers again.

Example 2: The following connection string:

"DSN=AcctOracleServer;ConnectionRetryCount=10;
ConnectionRetryDelay=10"

instructs the Oracle Wire Protocol driver to attempt to connect to the primary
server up to ten more times if the driver was unable to establish a connection
during the initial pass. The driver waits ten seconds before attempting to
connect again.

Connection retry can be an important strategy in recovering from failures that
bring down an Oracle RAC system. For example, suppose you have a power
failure scenario in which both the client and the Oracle RAC system go down.
When the power is restored and all computers are restarted, the client may
be ready to attempt a connection before an Oracle RAC system has
completed its startup routines. If connection retry is enabled, the client

U S I N G O R A C L E R E A L A P P L I C A T I O N C L U S T E R S (R A C)

8 O F 1 1 D A T A D I R E C T T E C H N O L O G I E S J U L Y 2 0 0 4

application would continue to retry the connection until a connection is
successfully accepted by a node in the Oracle RAC system.

Load Balancing

Oracle RAC systems provide two types of load balancing for automatic
workload management:

 Server load balancing distributes processing workload among Oracle
RAC nodes.

 Client load balancing distributes new connections among Oracle
RAC nodes so that no one server is overwhelmed with connection
requests. For example, when a connection fails over to another node
because of hardware failure, client load balancing ensures that the
redirected connection requests are distributed among the other
nodes in the RAC.

The primary difference between these two methods is that the former method
distributes processing and the latter method distributes connection attempts.

Server Load Balancing

With Oracle9i RAC systems, a listener service provides automatic load
balancing across nodes. The query optimizer determines the optimal
distribution of workload across the nodes in the RAC based on the number of
processors and current load.

Oracle 10g also provides load-balancing options that allow the database
administrator to configure rules for load balancing based on application
requirements and Service Level Agreements (SLAs). For example, rules can
be defined so that when Oracle 10g instances running critical services fail,
the workload is automatically shifted to instances running less critical
workloads. Or, rules can be defined so that Accounts Receivable services are
given priority over Order Entry services.

The DataDirect Connect for ODBC Oracle drivers can transparently take
advantage of server load balancing provided by an Oracle RAC without any
changes to the application. If you do not want to use server load balancing,
you can bypass it by connecting to the service name that identifies a
particular RAC node.

Client Load Balancing

Client load balancing helps distribute new connections in your environment so
that no one server is overwhelmed with connection requests. When client
load balancing is enabled, connection attempts are made randomly among
RAC nodes. You can enable connection failover for DataDirect Connect for
ODBC drivers through a driver connection string using the Load Balancing
connection string attribute.

U S I N G O R A C L E R E A L A P P L I C A T I O N C L U S T E R S (R A C)

D A T A D I R E C T T E C H N O L O G I E S J U L Y 0 4 9 O F 1 1

Suppose you have the Oracle RAC environment shown in Figure 4 with
multiple Oracle RAC nodes, A, B, C, and D. Without client load balancing
enabled, connection attempts may be front-loaded, meaning that most
connection attempts would try Node A first, then Node B, and so on until a
connection attempt is successful. This creates a situation where Node A and
Node B can become overloaded with connection requests.

Figure 5: Client Load Balancing

A

ODBC Applications Using
DataDirect Connect for ODBC Driver

CB D

Shared Storage System

With client load balancing enabled, the driver randomly selects the order of
the connection attempts to nodes throughout the Oracle RAC system. For
example, Node B may be tried first, followed by Nodes D, C, and A.
Subsequent connection retry attempts will continue to use this order. Using a
randomly determined order makes it less likely that any one node in the
Oracle RAC system will be so overwhelmed with connection requests that it
may start refusing connections.

For example, the following connection string enables client load balancing for
the DataDirect Connect for ODBC Oracle Wire Protocol driver:

"DSN=AcctOracleServer;
AlternateServers=(HostName=AccountOracleServer:PortNumber=1521:
SID=Accounting, HostName=255.201.11.24:PortNumber=1522:
ServiceName=ABackup.NA.MyCompany);LoadBalancing=1"

U S I N G O R A C L E R E A L A P P L I C A T I O N C L U S T E R S (R A C)

1 0 O F 1 1 D A T A D I R E C T T E C H N O L O G I E S J U L Y 2 0 0 4

Summary

A cluster architecture, such as Oracle RAC, provides applications with many
advantages such as connection failover and load balancing. DataDirect
Connect for ODBC drivers provide full support for these important features to
help make your business more flexible and agile in today's computing
environment, where scalability and data availability is critical.

In addition to its support for Oracle, DataDirect Connect for ODBC drivers
support connection failover and client load balancing for all major databases,
including IBM DB2, Informix, Microsoft SQL Server, and Sybase.

We welcome your feedback! Please send any comments concerning documentation, including
suggestions for other topics that you would like to see, to:

docgroup@datadirect.com

U S I N G O R A C L E R E A L A P P L I C A T I O N C L U S T E R S (R A C)

D A T A D I R E C T T E C H N O L O G I E S J U L Y 0 4 1 1 O F 1 1

FOR MORE INFORMATION

800-876-3101

info@datadirect.com

Worldwide Sales

Belgium (French)0800 12 045
Belgium (Dutch)0800 12 046
France0800 911 454
Germany0800 181 78 76
Japan0120.20.9613
Netherlands0800 022 0524
United Kingdom0800 169 19 07
United States800 876 3101

DataDirect Technologies is focused on data access, enabling
software developers at both packaged software vendors and in
corporate IT departments to create better applications faster.
DataDirect Technologies offers the most comprehensive, proven
line of data connectivity components available anywhere.
Developers worldwide depend on DataDirect Technologies to
connect their applications to an unparalleled range of data
sources using standards-based interfaces such as ODBC, JDBC
and ADOODBC, as well as cutting-edge XML query technologies.
More than 250 leading independent software vendors and
thousands of enterprises rely on DataDirect Technologies to
simplify and streamline data connectivity. DataDirect
Technologies is an operating company of Progress Software
Corporation (Nasdaq: PRGS).

www.datadirect.com

Copyright © 2004 DataDirect Technologies Corp. All rights
reserved. DataDirect Connect is a registered trademark of
DataDirect Technologies Corp. in the United States and other
countries. Java and all Java based trademarks and logos are
trademarks or registered trademarks of Sun Microsystems,
Inc. in the United States and other countries. Other company
or product names mentioned herein may be trademarks or
registered trademarks of their respective companies.

http://www.datadirect.com

