JDBC® Connection Pooling

1 Introduction

This document provides information intended to help developers provide a connection
pooling strategy for applications that must handle connection pooling. First, this
document provides an overview of JDBC® connection pooling as specified by the

JDBC 3.0 specification. Next, it provides examples of how to use the DataDirect
Connection Pool Manager (which is shipped with DataDirect Connect® for JDBC and
DataDirect SequeLink® for JDBC) for your applications. Finally, this document provides an
example showing performance benchmarks that demonstrate the performance benefit
you can achieve by using connection pooling.

__|
2 Connection Pooling

Establishing JDBC connections is resource-expensive, especially when the JDBC APl is
used in a middle-tier server environment, such as when DataDirect Connect for JDBC Or
DataDirect SequeLink for JDBC is running on a Java®-enabled web server. In this type of
environment, performance can be improved significantly when connection pooling is
used. Connection pooling means that connections are reused rather than created each
time a connection is requested. To facilitate connection reuse, a memory cache of
database connections, called a connection pool, is maintained by a connection pooling
module as a layer on top of any standard JDBC driver product.

Connection pooling is performed in the background and does not affect how an
application is coded; however, the application must use a DataSource object (an object
implementing the DataSource interface) to obtain a connection instead of using the
DriverManager class. A class implementing the DataSource interface may or may not
provide connection pooling. A DataSource object registers with a JNDI naming service.
Once a DataSource object is registered, the application retrieves it from the JNDI haming
service in the standard way. For example:

Context ctx = new InitialContext();
DataSource ds = (DataSource) ctx.lookup(*'jdbc/SequeLink™);

If the DataSource object provides connection pooling, the lookup returns a connection
from the pool if one is available. If the DataSource object does not provide connection
pooling or if there are no available connections in the pool, the lookup creates a new
connection. The application benefits from connection reuse without requiring any code
changes. Reused connections from the pool behave the same way as newly created
physical connections. The application makes a connection to the database and data
access works in the usual way. When the application has finished its work with the
connection, the application explicitly closes the connection. For example:

Connection con = ds.getConnection(''scott', "tiger');
// Do some database activities using the connection...
con.close();

DataDirect

JDBC® CONNECTION POOLING

The closing event on a pooled connection signals the pooling module to place the
connection back in the connection pool for future reuse.

3 JDBC 3.0 Connection Pooling Framework

The JDBC 3.0 API provides a general framework with "hooks" to support connection
pooling rather than specifying a particular connection pooling implementation. In this way,
third-party vendors or users can implement the specific caching or pooling algorithms
that best fit their needs. The JDBC 3.0 API specifies a ConnectionEvent class and the
following interfaces as the hooks for any connection pooling implementation:

e ConnectionPoolDataSource

¢ PooledConnection

e ConnectionEventListener

Figure 1 shows this general framework.

2 oF 17 DATADIRECT TECHNOLOGIES NOVEMBER 04

JDBC® CONNECTION POOLING

Figure 1. JDBC 3.0 Connection Pooling Architecture

JOBCDrivervendorDataSource =<Interface=> ﬂ:ﬂilnterfac_e:b:b
DataSource Connection

B i
v

“zInterface==
ConnectionPoolDataSource [55------------

FPoolingv'endarDataSource

“ZUserE :
T 1 *
: » <maintainzz
¢ =creater> "-.-" 1
: FoolingvendarConnectionCache
v . :

=<|nterfaces>
FooledConnection :
+eventSaurce v
: <<|nterface==
,& : +eventlistener | ConpactionEventListener
VLEcreate=x E ZLYSEE>

________ == ConnectionBEvent L .

JOBCDrivervendorFooled Connection

“<createx>

JDBCDriverVendorDataSource

A JDBC driver vendor must provide a class that implements the standard
ConnectionPoolDataSource interface. This interface provides hooks that third-party
vendors can use to implement pooling as a layer on top of their JDBC drivers. The
ConnectionPoolDataSource interface acts as a "factory" that creates PooledConnection
objects.

JDBCDriverVendorPooledConnection

A JDBC driver vendor must provide a class that implements the standard
PooledConnection interface. This interface allows third-party vendors to implement
pooling on top of their JIDBC drivers. A PooledConnection object acts as a "factory" that
creates Connection objects. A PooledConnection object maintains the physical
connection to the database; the Connection object created by the PooledConnection
object is simply a handle to the physical connection.

DATADIRECT TECHNOLOGIES NOVEMBER 04 3 OF 17

JDBC® CONNECTION POOLING

PoolingVendorDataSource

A third-party vendor must provide a class that implements the DataSource interface. This
interface is the entry point that allows interaction with their pooling module. The pooling
vendor's class uses the JDBC driver's PooledConnectionDataSource object to create the
PooledConnections that the pool manages.

PoolingVendorConnectionCache

The JDBC 3.0 API does not specify the interfaces to be used between the DataSource
object and the connection cache. The pooling vendor determines how these components
interact. Usually, a connection cache module contains one or multiple classes. In

Figure 1, the PoolingVendorConnectionCache class is used as a simple way to convey
this concept. The connection cache module should have a class that implements the
standard ConnectionEventListener interface. The ConnectionEventListener interface
receives ConnectionEvent objects from PooledConnection objects when a connection
closes or a connection error occurs. When a connection, created by a PooledConnection,
closes, the connection cache module returns the PooledConnection object to the cache.

When an application makes a connection by calling DataSource.getConnection() on a
PoolingVendorDataSource object, the PoolingVendorDataSource object performs a
lookup in the connection cache to determine if a PooledConnection object is available. If
one is available, it is used. If a PooledConnection object is not available, the JDBC driver
vendor’s ConnectionPoolDataSource creates a new PooledConnection object. In either
case, a PooledConnection object is made available.

The PoolingVendorDataSource object then invokes the
PooledConnection.getConnection() method to obtain a Connection object, which it
returns to the application to use as a normal connection. Because the JDBC driver
vendor implements the PooledConnection interface, the JDBC driver creates the
Connection object; however, this Connection object is not a physical connection as in the
non-pooling case. The Connection object is a handle to the physical connection
maintained by the PooledConnection object.

When the application closes the connection by calling the Connection.close() method, a
ConnectionEvent is generated and is passed to the cache module. The cache module
returns the PooledConnection object that created the connection to the cache to be
reused. The application does not have access to the PooledConnection.close() method.
Only the connection pooling module, as part of its clean-up activity, issues the
PooledConnection.close() method to actually close the physical connection.

4 OoF 17

DATADIRECT TECHNOLOGIES NOVEMBER 04

JDBC® CONNECTION POOLING

4 Creating a Data Source

This section provides examples on how to create pooled and non-pooled DataSource
objects for DataDirect Connect for JDBC and DataDirect SequeLink for JDBC, and register
them to a JNDI naming service.

4.1 Creating a DataDirect Data Source Object

DataDirect Connect® for JDBC

This example shows how to create a DataDirect Connect for JDBC DataSource object and
register it to a JNDI naming service. The DataSource class provided by the DataDirect
Connect for JDBC drivers is database-dependent. In the following example we use Oracle,
so the DataSource class is com.ddtek.jdbcx.oracle.OracleDataSource.

If you want the client application to use:

e A non-pooled data source, the application can specify the JNDI name of this data
source object as registered in the following code example
("jdbc/ConnectSparkyOracle").

e A pooled data source, the application must specify the JINDI name
("jdbc/SparkyOracle™) as registered in the code example in the section "4.2 Creating
a Data Source Using the DataDirect Connection Pool Manager" on page 8.

//**

//

// This code creates a DataDirect Connect for JDBC data source and

// registers it to a JNDI naming service. This DataDirect Connect for

// JDBC data source uses the DataSource implementation provided by

// DataDirect Connect for JDBC Drivers.

//

// This data source registers its IJNDI name as <jdbc/ConnectSparkyOracle>.
// Client applications using non-pooled connections must perform a lookup
// for this name.

//

// From DataDirect Connect for JDBC:
import com.ddtek.jdbcx.oracle.OracleDataSource;

import javax.sql.*;

import java.sql.*;

import javax.naming.*;

import javax.naming.directory.*;
import java.util_Hashtable;

public class OracleDataSourceRegisterJNDI

{

DATADIRECT TECHNOLOGIES NOVEMBER 04 5 oF 17

JDBC® CONNECTION POOLING

public static void main(String argv[])

{
try {
// Set up data source reference data for naming context:
/ -
// Create a class instance that implements the interface
// ConnectionPoolDataSource
OracleDataSource ds = new OracleDataSource();

ds.setDescription(

"Oracle on Sparky - Oracle Data Source');
ds.setServerName('sparky');
ds.setPortNumber(1521);
ds.setUser(*'scott");
ds.setPassword(*"test™);

// Set up environment for creating initial context
Hashtable env = new Hashtable();
env.put(Context. INITIAL_CONTEXT_FACTORY,

com.sun. jndi . fscontext.RefFSContextFactory');
env.put(Context.PROVIDER_URL, "file:c:\\JDBCDataSource');
Context ctx = new InitialContext(env);

// Register the data source to JNDI naming service
ctx.bind(""jdbc/ConnectSparkyOracle™, ds);

} catch (Exception e) {
System.out.printin(e);
return;

}
} // Main
} 7/ class OracleDataSourceRegisterJNDI

DataDirect SequeLink®

The following example shows how to create a SequeLink for JDBC DataSource object and
register it to a JNDI naming service. The DataSource class provided by the DataDirect
Sequelink for JDBC driver is database-independent; therefore, for all databases, the
DataSource class is SequeLinkDataSource.

If you want the client application to use:

e A non-pooled connection (4.1 Creating a DataDirect Data Source Object” on page
5), you must modify this example so that the JNDI entry is registered using the name
Jdbc/SparkyOracle.

e A pooled connection, the JNDI entry must map to the DataSource of the DataDirect
Connection Pool Manager. Therefore, you must register two data sources:

— The Connection Pool Manager's Data Source using the example in "4.2 Creating
a Data Source Using the DataDirect Connection Pool Manager" on page 8. This
process registers the data source using the JNDI entry jdbc/SparkyOracle. The
Connection Pool Manager creates physical connections using the JNDI entry
jdbc/SequelLinkSparkyOracle.

— A SequelLink Data Source, using the following example to register the
DataSource using the JNDI entry jdbc/SequeLinkSparkyOracle.

6 oF 17 DATADIRECT TECHNOLOGIES NOVEMBER 04

JDBC® CONNECTION POOLING

V4 feisisisisisiaisisisitiaiaiaisiaisiaisiaiaisisisiaisisiaisiaiaiaisiasiaiTisiisaiaisisisiaiTiasisiTiaiTaisaa sl
//

// This code creates a SequeLink for JDBC data source and registers it to a
// INDI naming service. This SequelLink for JDBC data source uses the

// DataSource implementation provided by the SequelLink for JDBC Driver.

//

// ITf you want users to use non-pooled connections, you must modify this

// example so that it registers the SequelLink Data Source using the JNDI

// entry <jdbc/SparkyOracle>.

//

// 1T you want users to use pooled connections, use this example as is

// to register the SequeLink Data Source using the JNDI entry

// <jdbc/SequeLinkSparkyOracle>. Also, use the example in the next section
// to register the Connection Pool Manager®s Data Source using the JNDI entry
// <jdbc/SparkyOracle>

//

V4 AsisisisisisitisisisititiaiaisiaisiaisiaiaisisiaiaisisiaiaiaiaiaisiasiaiaisisaiasiaisisaiaaisiaT sl

// From SequeLink for JDBC:
import com.ddtek.jdbcx.sequelink.SequeLinkDataSource;

import javax.sql.*;

import java.sql.*;

import javax.naming.*;

import javax.naming.directory.*;
import java.util_Hashtable;

public class SequelLinkDataSourceRegisterJNDI
public static void main(String argv[])

{
try {
// Set up data source reference data for naming context:
/) -
// Create a class instance that implements the interface
// ConnectionPoolDataSource
OracleDataSource ds = new SequelLinkDataSource();

ds.setDescription(

"Oracle on Sparky - SequeLink Data Source™);
ds.setServerName("'sparky');
ds.setPortNumber(19996) ;
ds.setUser(*'scott');
ds.setPassword(*"test™);

// Set up environment for creating initial context
Hashtable env = new Hashtable();
env.put(Context. INITIAL_CONTEXT_FACTORY,

"com.sun. jndi . fscontext.RefFSContextFactory');
env.put(Context.PROVIDER_URL, "file:c:\\JDBCDataSource');
Context ctx = new InitialContext(env);

// Register the data source to JNDI naming service
ctx_bind("jdbc/SequeLinkSparkyOracle', ds);

} catch (Exception e) {
System.out.printin(e);
return;

}
} 7/ Main
} 7/ class SequelLinkDataSourceRegisterJNDI

DATADIRECT TECHNOLOGIES NOVEMBER 04 7 OF 17

JDBC® CONNECTION POOLING

4.2 Creating a Data Source Using the DataDirect Connection Pool Manager

DataDirect Connect® for JDBC

The following Java code example creates a data source for DataDirect Connect for JDBC
and registers it to a INDI naming service. The PooledConnectionDataSource class is
provided by the DataDirect com.ddtek.pool package. In the following code example, the
PooledConnectionDataSource object references a pooled DataDirect Connect for JDBC
data source object. Therefore, the example performs a lookup by setting the
DataSourceName attribute to the JNDI name of a registered pooled data source (in this
example, jdbc/ConnectSparkyOracle, which is the DataDirect Connect for JDBC
DataSource object created in section "4.1 Creating a DataDirect Data Source Object" on

page 5).

Client applications that use this data source must perform a lookup using the registered
JNDI name (jdbc/SparkyOracle in this example).

//
//
//
//
//
//
//
//
//
//
//

B i S = =

This code creates a data source and registers it to a JNDI naming
service. This data source uses the PooledConnectionDataSource
implementation provided by the DataDirect com.ddtek.pool package.

This data source refers to a previously registered pooled data source.

This data source registers its name as <jdbc/SparkyOracle>.
Client applications using pooling must perform a lookup for this name.

//**

//

From the DataDirect connection pooling package:

import com.ddtek.pool.PooledConnectionDataSource;

import javax.sql.*;

import java.sql.*;

import javax.naming.*;

import javax.naming.directory.*;
import java.util_Hashtable;

public class PoolMgrDataSourceRegisterJNDI

public static void main(String argv[])

{
try {
// Set up data source reference data for naming context:
/Y -

// Create a pooling manager®s class instance that implements
// the interface DataSource
PooledConnectionDataSource ds = new PooledConnectionDataSource();

ds.setDescription("Sparky Oracle - Oracle Data Source');

// Refer to a previously registered pooled data source to access
// a ConnectionPoolDataSource object
ds.setDataSourceName("'jdbc/ConnectSparkyOracle');

// The pool manager will be initiated with 5 physical connections
ds.setlnitialPoolSize(5);

8 OF 17 DATADIRECT TECHNOLOGIES NOVEMBER 04

JDBC® CONNECTION POOLING

// The pool maintenance thread will make sure that there are 5
// physical connections available
ds.setMinPoolSize(5);

// The pool maintenance thread will check that there are no more
// than 10 physical connections available
ds.setMaxPoolSize(10);

// The pool maintenance thread will wake up and check the pool
// every 20 seconds
ds.setPropertyCycle(20);

// The pool maintenance thread will remove physical connections
// that are inactive for more than 300 seconds
ds.setMaxldleTime(300);

// Set tracing off since we choose not to see output listing
// of activities on a connection
ds.setTracing(false);

// Set up environment for creating initial context
Hashtable env = new Hashtable();
env.put(Context. INITIAL_CONTEXT_FACTORY,

com.sun. jndi . fscontext.RefFSContextFactory');
env.put(Context.PROVIDER_URL, "file:c:\\JDBCDataSource');
Context ctx = new InitialContext(env);

// Register the data source to JNDI naming service
// for application to use
ctx_.bind("jdbc/SparkyOracle™, ds);

} catch (Exception e) {
System.out.printin(e);
return;

}

} // Main
} 7/ class PoolMgrDataSourceRegisterJNDI

DataDirect SequeLink®

The following Java code example creates a data source for JDBC and registers it to a
JNDI naming service. The PooledConnectionDataSource class is provided by the
DataDirect com.ddtek.pool package. In the following code example, the
PooledConnectionDataSource object references a JDBC data source object. The
example performs a lookup by setting the DataSourceName attribute to the JNDI name
of a registered pooled data source (in this example, jdbc/SequeLinkSparkyOracle, which
is the JDBC DataSource object created in section "4.1 Creating a DataDirect Data
Source Object” on page 5).

Client applications that use this data source must perform a lookup using the registered
JNDI name (jdbc/SparkyOracle in this example).

DATADIRECT TECHNOLOGIES NOVEMBER 04 9 OoF 17

JD

BC® CONNECTION POOLING

//
//
//
//
//
//
//
//
//
//
//

R R

This code creates a data source and registers it to a JNDI naming
service. This data source uses the PooledConnectionDataSource
implementation provided by the DataDirect com.ddtek.pool package.

This data source refers to a previously registered pooled data source.

This data source registers its name as <jdbc/SparkyOracle>.
Client applications using pooling must perform a lookup for this name.

//
//

B L i = s =

From the DataDirect connection pooling package:

import com.ddtek.pool .PooledConnectionDataSource;

import javax.sql.*;

import java.sql.*;

import javax.naming.*;

import javax.naming.directory.*;
import java.util_Hashtable;

public class PoolMgrDataSourceRegisterJNDI

public static void main(String argv[])
{
try {
// Set up data source reference data for naming context:
/Y -
// Create a pooling manager®s class instance that implements
// the interface DataSource
PooledConnectionDataSource ds = new PooledConnectionDataSource();

ds.setDescription("Sparky Oracle - Oracle Data Source');

// Refer to a previously registered pooled data source to access
// a ConnectionPoolDataSource object
ds.setDataSourceName("'jdbc/SequelLinkSparkyOracle'™);

// The pool manager will be initiated with 5 physical connections
ds.setlnitialPoolSize(5);

// The pool maintenance thread will make sure that there are
// at least 5 physical connections available
ds.setMinPoolSize(5);

// The pool maintenance thread will check that there are no more
// than 10 physical connections available
ds.setMaxPoolSize(10);

// The pool maintenance thread will wake up and check the pool
// every 20 seconds
ds.setPropertyCycle(20);

// The pool maintenance thread will remove physical connections
// that are inactive for more than 300 seconds
ds.setMaxldleTime(300);

// Set tracing off since we choose not to see output listing
// of activities on a connection
ds.setTracing(false);

10

OF 17 DATADIRECT TECHNOLOGIES NOVEMBER 04

JDBC® CONNECTION POOLING

// Set up environment for creating initial context
Hashtable env = new Hashtable();
env._put(Context. INITIAL_CONTEXT_FACTORY,

com.sun. jndi . fscontext.RefFSContextFactory');
env.put(Context.PROVIDER_URL, "file:c:\\JDBCDataSource');
Context ctx = new InitialContext(env);

// Register the data source to JNDI naming service
// for application to use
ctx.bind("jdbc/SparkyOracle™, ds);

} catch (Exception e) {
System.out.printin(e);
return;

}

} // Main
} 7/ class PoolMgrDataSourceRegisterJNDI

5 Connecting to a Data Source

Whether connection pooling is used does not affect application code. It does not require
any code changes to the application because the application performs a lookup on a
JNDI name of a previously registered data source. If the data source specifies a
connection pooling implementation during JNDI registration (as described in section "4.2
Creating a Data Source Using the DataDirect Connection Pool Manager" on page 8), the
client application benefits from faster connections through connection pooling.

DataDirect Connect® for JDBC
The following example shows code that can be used to look up and use a JNDI-
registered data source for connections. You specify the JNDI lookup name for the data
source you created (as described in section "4.2 Creating a Data Source Using the
DataDirect Connection Pool Manager" on page 8).

V4 Asisiaiaioiaiaialalaioioioioiaialalaiaiaioioialolaiaiaioioiaiolaiaiaiaioiololole

//

// Test program to look up and use a JNDI-registered data source.
//

// To run the program, specify the JINDI lookup name for the

// command-line argument, for example:

//

// Jjava TestDataSourceApp JNDI_lookup_name

//

// Fekeokeokek
import javax.sql.*;

import java.sql.*;

import javax.naming.*;

import java.util_Hashtable;

public class TestDataSourceApp

public static void main(String argv[])

{
String strJNDILookupName = ""*';

DATADIRECT TECHNOLOGIES NOVEMBER 04 11 oF 17

JDBC® CONNECTION POOLING

// Get the JINDI lookup name for a data source
int nArgv = argv.length;
it (nArgv 1= 1) {
// User does not specify a JNDI lookup name for a data source,
System.out.printin(
"Please specify a JNDI name for your data source');
System._exit(0);
} else {
strJNDILookupName = argv[0];
}

DataSource ds = null;
Connection con = null;
Context ctx = null;

Hashtable env = null;

long nStartTime, nStopTime, nElapsedTime;

// Set up environment for creating InitialContext object
env = new Hashtable();
env.put(Context. INITIAL_CONTEXT_FACTORY,

com.sun. jndi . fscontext.RefFSContextFactory');
env.put(Context.PROVIDER_URL, *file:c:\\JDBCDataSource');

try {
// Retrieve the DataSource object that bound to the logical

// lookup JNDI name
ctx = new InitialContext(env);
ds = (DataSource) ctx.lookup(strJINDILookupName);
} catch (NamingException eName) {
System.out.printIn("Error looking up " +
strJNDILookupName + '': " +eName);
System._exit(0);
}

int numOfTest
int [1 nCount

4;
{100, 100, 1000, 3000};

for (int i = 0; i < numOfTest; i ++) {
// Log the start time
nStartTime = System.currentTimeMillis();
for (int j = 1; j <= nCount[i]; j++) {
// Get Database Connection
try {
con = ds.getConnection(''scott", '"tiger');
// Do something with the connection
// ..

// Close Database Connection
if (con '= null) con.close();
} catch (SQLException eCon) {
System.out.printIn("Error getting a connection: " + eCon);
System.exit(0);
} // try getConnection
} 7/ for j loop

// Log the end time
nStopTime = System.currentTimeMillis();

// Compute elapsed time
nElapsedTime = nStopTime - nStartTime;
System.out._printIn("'Test number ™ + i + ": looping " +
nCount[i] + ™ times™);
System.out.printin("Elapsed Time: " + nElapsedTime + "\n"");
} 7/ for i loop

12 oF 17 DATADIRECT TECHNOLOGIES NOVEMBER 04

} 7/ Main

JDBC® CONNECTION POOLING

// All done
System._exit(0);

} // TestDataSourceApp

NOTE: The DataDirect Connect for JDBC DataSource object class implements the
DataSource interface for non-pooling in addition to ConnectionPoolDataSource for
pooling. To use a non-pooling data source, use the JNDI name registered in the example
code in section "4.1 Creating a DataDirect Data Source Object" on page 5 and run the
TestDataSourceApp. For example:

Java TestDataSourceApp jdbc/ConnectSparkyOracle

DataDirect SequeLink® for JDBC

The following example shows code that can be used to look up and use a JNDI-
registered data source for connections. You specify the JNDI lookup name for the data
source you created (as described in section "4.2 Creating a Data Source Using the
DataDirect Connection Pool Manager" on page 8).

//
//

*hKhkkk

// Test program to look up and use a JNDI-registered data source.

//

// To run the program, specify the JIJNDI lookup name for the
// command-line argument, for example:

//
//
//

jJjava TestDataSourceApp JNDI_lookup_name

import javax.sql.*;

import java.sql.*;

import javax.naming.*;
import java.util_Hashtable;

public class TestDataSourceApp

public static void main(String argv[])

{

String str JNDILookupName = *jdbc/SparkyOracle;
// Hard-code the JNDI entry, the application does not need to change

DataSource ds = null;
Connection con = null;
Context ctx = null;

Hashtable env = null;

long nStartTime, nStopTime, nElapsedTime;

// Set up environment for creating InitialContext object
env = new Hashtable();
env.put(Context. INITIAL_CONTEXT_FACTORY,

""com.sun. jndi . fscontext.RefFSContextFactory');
env.put(Context.PROVIDER_URL, *"file:c:\\JDBCDataSource');

DATADIRECT TECHNOLOGIES NOVEMBER 04 13 oF 17

JDBC® CONNECTION POOLING

try {
// Retrieve the DataSource object that bound to the logical

// lookup JNDI name
ctx = new InitialContext(env);
ds = (DataSource) ctx.lookup(strJNDILookupName);
} catch (NamingException eName) {
System.out._printIn("Error looking up " +
strINDILookupName + *': " +eName);
System.exit(0);
}

int numOfTest
int [] nCount

4;
{100, 100, 1000, 3000};

for (int i = 0; i < numOfTest; i ++) {
// Log the start time
nStartTime = System.currentTimeMillis();
for (int j = 1; jJ <= nCount[i]; j++) {
// Get Database Connection
try {
con = ds.getConnection(''scott", "tiger'™);
// Do something with the connection
// ...

// Close Database Connection
if (con = null) con.close();
} catch (SQLException eCon) {
System.out.printIn("Error getting a connection: " + eCon);
System.exit(0);
} // try getConnection
} 7/ for j loop

// Log the end time
nStopTime = System.currentTimeMillis();

// Compute elapsed time
nElapsedTime = nStopTime - nStartTime;
System.out.printIn(''Test number " + i + ": looping " +
nCount[i] + ™ times™);
System.out.printIin("Elapsed Time: " + nElapsedTime + "\n");
} 7/ for i loop

// All done
System._exit(0);

} // Main
} // TestDataSourceApp

NOTE: The DataDirect SequeLink for JDBC DataSource object class implements the
DataSource interface for non-pooling in addition to ConnectionPoolDataSource for
pooling. To use non-pooled connections, modify the example in "4.1 Creating a
DataDirect Data Source Object" on page 5 so that it registers the SequeLink Data Source
using the JNDI entry

Jjdbc/SparkyOracle

You can then run the TestDataSourceApp without any modification:

Java TestDataSourceApp

14 orF 17 DATADIRECT TECHNOLOGIES NOVEMBER 04

JDBC® CONNECTION POOLING

|
6. Closing the Connection Pool

To ensure that the connection pool is closed correctly when an application stops running,
the application must notify the DataDirect Connection Pool Manager when it stops. If an
application runs on JRE 1.3 or higher, notification occurs automatically when the
application stops running. If an application runs on JRE 1.2, the application must
explicitly notify the pool manager when it stops using the
PooledConnectionDataSource.close method as shown in the following code:

if (ds instanceof com.ddtek.pool .PooledConnectionDataSource){
com.ddtek.pool .PooledConnectionDataSource pcds =
(com._ddtek.pool .PooledConnectionDataSource) ds;
pcds.close();

The PooledConnectionDataSource.close method also can be used to explicitly close the
connection pool while the application is running. For example, if changes are made to the
pool configuration using a pool management tool, the
PooledConnectionDataSource.close method can be used to force the connection pool to
close and re-create the pool using the new configuration values.

|
7 Performance Benchmarks

We used the sample application provided in section "5 Connecting to a Data Source" on
page 11 to open a connection to Oracle9i using a DataDirect Connect for JDBC 3.2 Oracle
driver. We closed the connection at 100, 100, 1000, and 3000 iterations. We ran this
sample application on a single Pentium IV 2 GHz machine with 512 MB RAM connected
to an Oracle9i Server (Pentium IV 2 GHz machine with 512 MB RAM). The total elapsed
time for each run was measured when connection pooling was used and was measured
again when connection pooling was not used as shown in the following table:

100 Iterations 100 Iterations 1000 Iterations 3000 lterations
Pooling 547 ms <10 ms 47 ms 31 ms’
Non-Pooling 4859 ms 4453 ms 43625 ms 134375 ms

When connection pooling was used, the first connection took the longest time because a
new physical connection had to be created and the pool manager had to be initialized.
Once the connection existed, the physical connection was placed in the pool and was
reused to create a handle for each subsequent connection. You can see this by
comparing the first connection (the first 100 iterations) with its subsequent connections.

NOTE: In our connection pooling example, all subsequent connections were reused
because they were used for the same user and pool cleanup had not occurred.

Now, compare the pooling results at each iteration checkpoint to the non-pooling results.
Clearly, connection pooling represents a significant improvement in performance.

! Note that the time for the 3000 iteration pooled case is faster than the 1000 iteration pooled case. This is because the Just In
Time (JIT) compiler took effect at this point. If the JIT compiler is disabled, the time for the 3000 iteration pooled case
increases to 94 ms, while the time for the other pooled cases remains the same.

DATADIRECT TECHNOLOGIES NOVEMBER 04

15 oF 17

JDBC® CONNECTION POOLING

8 Conclusion

Connection pooling provides a significant improvement on performance by reusing
connections rather than creating a new connection for each connection request, without
requiring changes in your JDBC application code.

We welcome your feedback! Please send any comments concerning documentation, including
suggestions for other topics that you would like to see, to:

docgroup@datadirect.com

16 oF 17 DATADIRECT TECHNOLOGIES NOVEMBER 04

JDBC® CONNECTION POOLING

FOR MORE INFORMATION

800-876-3101 DataDirect

DataDirect Technologies is focused on data access, enabling

info@datadirect.com software developers at both packaged software vendors and in
corporate IT departments to create better applications faster.

Worldwide Sales DataDirect Technologies offers the most comprehensive, proven
Belgium (French) 0800 12 045 line of data connect_lwty components ava_llable anywherg.
Belgium (Dutch).. _..0800 12 046 Developers worldwide depend on DataDirect Technologies to
France ..., 0800 911 454 connect their applications to an unparalleled range of data
Germanyccccoeveeeeenn. 0800 181 78 76 . dards-b d interf h ODBC. JDBC
Japan ... 0120.20.9613 sources using standards-based interfaces such as ,
Netherlands................... 0800 022 0524 and ADO.NET, as well as cutting-edge XML query technologies.
United Kingdom........... 0800 169 19 07 More than 250 leading independent software vendors and

United States.................. 800 876 3101 . . .
thousands of enterprises rely on DataDirect Technologies to

simplify and streamline data connectivity. DataDirect
Technologies is an operating company of Progress Software
Corporation (Nasdag: PRGS).

www.datadirect.com

Copyright © 2004 DataDirect Technologies Corp. All rights
reserved. DataDirect Connect is a registered trademark of
DataDirect Technologies Corp. in the United States and other
countries. Java and all Java based trademarks and logos are
trademarks or registered trademarks of Sun Microsystems,
Inc. in the United States and other countries. Other company
or product names mentioned herein may be trademarks or
registered trademarks of their respective companies.

DATADIRECT TECHNOLOGIES NOVEMBER 04 17 oF 17

