3 Progress OpenEdge’

Progress Application ~
Server (PAS) for OpenEdge

Technical Migration Guide

GUIDE

Progress’

Table of Contents

Infroduction / 3

Understanding PAS for OpenEdge / 4
PAS for OpenEdge Deployment Options / 13
PAS for OpenEdge Configuration / 20
PAS for OpenEdge Runtime / 22

PAS for OpenEdge Management / 28
Migration Strategy / 30

ABL Client Migration / 38

REST Client Migration / 41

SOAP Client Migration /[42
WebSpeed Migration / 43

Open Client Migration / 52

Server Sizing / 55

Troubleshooting / 58

Next Steps / 60

© 2025 Progress. All Rights Reserved.

https://www.progress.com/

Progress’

Infroduction

The Progress Application Server for OpenEdge (PAS for OpenEdge) serves as a
secure, standards-based application server designed to replace the classic AppServer for
OpenEdge applications. It utilizes system resources very efficiently fo improve scalability,

and eases installation, configuration, and management.

PAS for OpenEdge is an enterprise-class application server that integrates application
business logic and data with various client technologies, facilitating the modernization of
user experiences and enhancing security measures. It is built upon the widely adopted
Apache Tomcat® Web Server environment to provide industry-standard security via the
Spring Security framework. On top of that, it also brings features such as clustering and

load balancing to ultimately improve scalability and extensibility.

PAS for OpenEdge extends the Apache Tomcat Web Server to manage the specific needs
of OpenEdge clients, including ABL, Open Clients (NET and Java), WEB, REST and SOAP.
PAS for OpenEdge is a crucial part of a confinuous available deployment architecture,
which protects applications against downtime and ensures users remain connected to

their systems of record (including documents, data files and business applications).

Continuous availability merges high availability and continuous operations strategies to
effectively manage both planned and unplanned outages. PAS for OpenEdge, along with
a fault-folerant deployment architecture, is designed to keep your business application

running without any noticeable downtime.

This document outlines best practices for ensuring continuous availability with PAS
for OpenEdge, emphasizing strategies for migrating ABL applications from the classic
AppServer and WebSpeed to the unified PAS for OpenEdge. Migration to PAS for

OpenEdge 12.8 or later is recommended.

© 2025 Progress. All Rights Reserved.

Hybrid Apps

Native Apps

. B2BApps

Understanding PAS for
OpenEdge

Architecture

PAS for OpenEdge is an infegral component of the OpenEdge environment. The following

figure illustrates PAS for OpenEdge and its associated OpenEdge components.instal.

Ul Connectivity
Options

»

Sitefinity

Kendo UI
or 3" party

Progress JSDO

Extemal
Framework

Progress’

Perimeter

S0

https://hostport/
webapp/transport/
Service/Resource

Cloud-Hosted

Internal

DMZ
EEEEE R =
APl Authorization
Gateway/ Layer
Router SS0/Direct
() login
Eg
External External
Systems Identity
Provider
2~ rovide

]

OpenEdge
Client

Load
Balancer

OE Auth
Gateway

OpenEdge Business Application

WEB
REST

SOAP

APSV

| —
N
OEDB
Replication
T

OEDB Admin
Access

| 4 — i
=] <
’ =
oo —
- QOEDB
Audit

Within an enterprise business application, PAS for OpenEdge is the application server

component of PAS for OpenEdge interacts with the OpenEdge database and serves client

requests using fransports over HT TP/S.

PAS for OpenEdge is an Apache Tomcat web server that includes support for OpenEdge

ABL applications. It supports a variety of clients, including ABL, browser-based clients,

REST, and mobile clients. Apache Tomcat is built using industry standards such as Spring

Security, a powerful and highly customizable authentication and access- control framework

for enterprise applications. PAS for OpenEdge is designed for easy business application

deployment and simplified application management.

© 2025 Progress. All Rights Reserved.

Progress’

The following diagram is a representation of a PAS for OpenEdge instance, note all

components reside on a single machine:

https://localhost:8810 Pool of
multi -session
Tomcat Web Server AVM agents
ABL Application
[/localhost:881(
ROOT SR
@ e
https://localhost:8810/webapp1/ g g ;
ABL Web App 1 Session Manager v
>
2 ABLServicel e £ = i
5 3 o AVM A ¥ 3 o
D ABL Service 2 ; Session a g g g g
s Map
-~
https://localhost:8810/webapp2/ T A
ABLWebApp2 e
> :
O = i
£5 ABL Service 1 9 g ; é
3y
4 ABL Service 2
https://localhost:8810/oemanager/ https://localhost:8810/xxx/
REST API oemanager External Web App XXX

The components in the diagram are: What helps to examine the customer needs and tailor
the PoC:

Tomcat Web Server (PAS for OpenEdge Instance). Tomcat is used both as a web
server to deliver static web content and as an application server for ABL applications.
Tomcat accepts incoming HTTP/S requests from clients such as ABL, browser clients
and mobile devices and routes those to the web applications deployed to the Tomcat
web server. All clients (including ABL and OpenClient) communicate with PAS for
OpenEdge using HTTP. You can find details on the Tomcat environment at PAS for

OpenEdge Instances.

One or more ABL applications. An ABL Application is a grouping of ABL web
applications and business logic that operates within a uniqgue PROPATH, set

of database connections, application configuration such as locale, and security
configuration. An ABL application also provides perimeter security. A single ABL
application can be used to replace both classic AppServer Agents and WebSpeed

Messengers. You can find details on ABL applications at ABL Applications.

© 2025 Progress. All Rights Reserved.

https://docs.progress.com/bundle/pas-for-openedge-introduction/page/Instances.html#Instances
https://docs.progress.com/bundle/pas-for-openedge-introduction/page/Instances.html#Instances
https://docs.progress.com/bundle/pas-for-openedge-introduction/page/ABL-applications.html

Progress’

One or more ABL web applications. A web application is the next level of isolation
within an ABL application. It is identified by a unique URL path and security
configuration. All HTTP/S requests for that URL are mapped to a published API
defined as an ABL Service or are used fo access static content. Each APl is a logical
representation and maps to specific ABL code which permits obfuscation of sensitive
implementation details such as method and parameter names. Each web application
is packaged as a web application archive file (war). You can find details on ABL web

applications at PAS for OpenEdge Web Applications.

One or more ABL Services. ABL Services define domain- and micro-service APIs as
part of an ABL web application. The ABL Service is identified as a resource in the
URL and mapped fo business logic within the ABL Application. The mapping details
are transport type specific—one of WEB, REST, SOAP, or APSV are used. You can find

details on ABL services at Create an ABL Service and ABL Service Artifacts.

One or more Multi-session Agents (MSAgents). An MSAgent is a specialized AVM
that can run multiple ABL sessions concurrently, allowing one MSAgent to handle
requests from multiple PAS for OpenEdge clients. A MSAgent maps one-to-one with
an OS process. Since you can run multiple ABL sessions within a single process, this

highly scalable architecture uses less system resources than classic AppServer.

When an MSAgent starts up, it runs the Agent Startup procedure if one was specified.
This procedure can be used to perform tasks required by all server sessions that are
run in the agent. One common task is o create all self-service database connections
that are shared by the server sessions created and managed by a given MSAgent.
Each MSAgent is a user with its own self-service connection to a given database, and
all its server sessions share that same connection as separatfe users. You can find

details on Agents and ABL Sessions at Agents and Sessions and ABL Sessions.

The Session Manager. The Session Manager is an infernal component responsible

for processing all incoming requests and routes them to the ABL Sessions within an
MSAgent. It also manages the pool of ABL Sessions that can be run in one or more

MSAgents. You can find details on the Session and session pool at ABL Session

Manager and Session Pool.

PAS for OpenEdge Clients send requests to a PAS for OpenEdge instance. PAS

for OpenEdge Clients can be an ABL Client, Java Open Client, NET Open Client,
browser Client, REST clients, SOAP clients, Web Ul and Mobile Ul. In general, PAS

for OpenEdge expects clients fo operate in a stafeless manner. For the purposes of
supporting classic AppServer applications, the APSV and SOAP transports give you a
means to emulate session-managed and session-free models. ABL Services identify
the type of clients that can be supported by including a transport identifier in the URI

of the service.

© 2025 Progress. All Rights Reserved.

https://docs.progress.com/bundle/pas-for-openedge-introduction/page/Web-applications.html
https://docs.progress.com/bundle/openedge-developer-studio-help/page/Create-an-ABL-Service.html
https://docs.progress.com/bundle/openedge-developer-studio-help/page/ABL-Service-artifacts.html
https://docs.progress.com/bundle/openedge-abl-develop-services/page/Agents-and-sessions.html
https://docs.progress.com/bundle/pas-for-openedge-introduction/page/ABL-sessions.html
https://docs.progress.com/bundle/pas-for-openedge-management/page/ABL-session-manager-and-session-pool.html
https://docs.progress.com/bundle/pas-for-openedge-management/page/ABL-session-manager-and-session-pool.html

Progress’

Supported transports are:

. APSV for ABL clients, Java, and .NET Open Clients
o WEB, REST for RESTful state-free requests

. SOAP for SOAP requests

. Stafic content (ROOT)

You can find more details on transports af Transports and Services and details

on client access migration fo PAS for OpenEdge in the ABL Application Code
Migration.

You can find additional details on the PAS for OpenEdge components described
above at What is PAS for OpenEdge?

Sessions in PAS for OpenEdge

[t is important to understand the multiple types of sessions that are part of PAS for
OpenEdge since PAS for OpenEdge acts as both a web application server and as

a multi-session Agent. This overloaded use of the term “session” can be defined as
follows:

e Client Session (Client application)

e HTTP/S Session

e Login Session

e Session Manager Session

e ABL Session

Client Session

A Client Session is implicitly created and managed by the client application or browser
when a user connects to an ABL Application. This Client Session is relevant when

the client plans fo communicate a contiguous sequence of requests with PAS for
OpenEdge such as login, a set of requests, and logout. The Client Session maintains
the context for the connection by storing Apache Tomcat’s JSESSIONID returned

on login and passing it on all subsequent requests to PAS for OpenEdge. This

session is exclusively client-side and is not known to PAS for OpenEdge. You can find
information about JSESSIONID at Wikipedia’s Session ID. You can find client interaction
details at PAS for OpenEdge and Client Interaction.

© 2025 Progress. All Rights Reserved.

https://docs.progress.com/bundle/pas-for-openedge-introduction/page/Transports-and-services.html
https://docs.progress.com/bundle/openedge-migrate-classic-appserver/page/ABL-Application-Code-Migration.html
https://docs.progress.com/bundle/openedge-migrate-classic-appserver/page/ABL-Application-Code-Migration.html

HTTP/S Session

An HTTP/S Session is created and managed by Apache Tomcat, as the default method
for preserving session and contextual information when a login request is received from
a client. This session captures execution state and confext across a contiguous sequence
of HTTP/S message exchanges from a specific client by assigning a unique identifier,
JSESSIONID. The JSESSIONID is a cookie generated by Servlet containers like Tomcat or

Jetty and used for session management for HTTP/S protocol.

HTTP/S sessions are an enabling technology for communication and load balancing.
With HTTP/S sessions, session information can be shared between a cluster of PAS
for OpenEdge instances. To add an instance fo a cluster, you must turn on the cluster

property in the /conf/server.xml file of the instance.

OpenEdge 12.8 and later supports Java 17 which provides support for TLS 1.3. The default
is still TLS 1.2. The cert store has not changed, nor has the implementation of how we use

certificates. You can find details at Manage Certificate Store Files.

Session Manager Session

The Session Manager creates its own Session in response to a request from a PAS for
OpenEdge client to manage the execution of a client request to an ABL Session. Each
Session Manager Session maps one-to-one to an HTTP/S Session as defined above.
Session Manager Sessions exist for the life of the request except for the APSV transport
where the session exists from the initial client login until the client disconnects. These

sessions are internal and never exposed fo the developer/user.

Login Session

A Login Session manages a user identity with a unique id-token issued by a trusted
Authentication Provider. This id-token is used by a web application to authorize access

to files and application resources. A Login Session may exist for a single web application
that employs its own private Authentication Provider, or it may exist for multiple ABL web

applications that span multiple PAS for OpenEdge instances.

It is common for the ABL web application to produce a Login Session containing a Client-
Principal id-token. The Client-Principal id-token is available to the ABL application for
authentication (of database connections) and authorization processes. You can find details

on the Client-Principal at Introduction to OpenEdge security domains.

Progress © 2025 Progress. All Rights Reserved.

https://docs.progress.com/bundle/openedge-security-keys-and-certificates/page/Manage-certificate-stores-for-OpenEdge-clients-and-servers.html

Progress’

When running in an SSO enterprise environment, the PAS for OpenEdge client creates a
Login Session with an external Authentication Provider id-token. The PAS for OpenEdge
client sends this id-tfoken fo the web application’s Spring Security component where built-
in Spring SSO Authentication Providers (i.e, OAUTH2, SAML2) validate the id-token on
each HTTP/S request. If valid, PAS for OpenEdge will produce an equivalent Sealed Client-
Principal id-token that is delivered o the ABL application for use in authentication and

authorization processes. You can find details on SSO at About single sign on support.

Note: SSO is available for the APSV, WEB and REST transports but not for the SOAP

fransport.

ABL Session

An ABL Session is a concept that has existed since the beginning of OpenEdge. An ABL
session is a secure, segregated environment in which ABL business logic can run. For

classic AppServer one ABL Session is mapped to one AVM running in one OS process.

With PAS for OpenEdge and the MSAgent, a single OS process can contain multiple ABL
Sessions to handle concurrent client requests. ABL Sessions are uniguely identified by a
Session ID and contain a private copy of ABL application r-code, variables, handles/objects,
database connections, network connections, and OS file-system channels. A pool of available
ABL Sessions is managed by the MSAgent and made available to the Session Manager. You

can find details on operating modes at Migrate classic AppServer operating modes.

Architectural differences between Classic AppServer
and PAS for OpenEdge

While both PAS for OpenEdge and the classic AppServer run ABL business applications,
the architecture and configuration are fundamentally different. As defined earlier, PAS

for OpenEdge is built using standard components such as the Apache Tomcat web

server which it extends with pre-built ABL web applications fo be able to run ABL code.

[t is important to understand the differences between the architectural models and
components of classic AppServer applications to PAS for OpenEdge so you can best
migrate your business applications. You can find details on these differences at Differences

between Classic AppServer, WebSpeed Transaction Server, and PAS for OpenEdge.
The classic AppServer components AlA and the NameServer are not used by PAS

for OpenEdge. The classic AppServer scheme of AppServerDC is not available in PAS

for OpenEdge. Instead, all communication is done over HTTP/S using a URL for the

© 2025 Progress. All Rights Reserved.

https://docs.progress.com/bundle/openedge-migrate-classic-appserver/page/Migrate-classic-AppServer-operating-modes.html

Progress’

connection. Lastly, the AdminServer is not needed by PAS for OpenEdge to service
requests; but it can still be used for remote administration using OpenEdge Management

and OpenEdge Explorer to manage a PAS for OpenEdge instance.

The rest of this section looks at the main differences and important considerations for
migrating to PAS for OpenEdge. When you are ready fo migrate, you can find details on
the steps to move your application from classic AppServer to PAS for OpenEdge at Move

Classic AppServer Applications to PAS for OpenEdge.

Connection and Operating Modes

It is important to understand the connection and operating modes of Classic AppServer
and call out any differences from that behavior in PAS for OpenEdge. In classic AppServer

you had:
Connection modes: Session-managed, Session-free
Operating modes: State-aware, State-reset, Stateless, State-free

For session-managed applications or a session-free that use bound connections (State-
aware, State-reset, Stateless, State-free) to support complex operations, the operations
can perform fine-grained procedures and functions because the ultimate result for a client
does not have to be completed in a single request since each request will go to the same
ABL Session. Each request executed in a series of session-managed requests can help to
assemble the context of a single operation until a single committing call completes the

fransaction after this context is complete.

In the session-managed connection mode, Connect and Disconnect procedures are
run and establish the initial client connection state. In session-managed connections,

asynchronous requests are queued and executed in the order they were run (sequential.

For a session-free application or a session-managed application that uses unbound
connections (Stateless, State-free), whether simple or complex (powerful), each request
runs as a self-contained operation and must complete their function in one request, since
additional requests can be sent fo a different ABL session. Client session context can be
maintained for a session-free or for an unbound session-managed application between

requests in a few ways:
¢ Client management: Use input-output parameters or HT TP cookies to pass client

session context between requests from the connected client. In this case, the client

session state is maintained and managed by the client.

© 2025 Progress. All Rights Reserved.

http://Move Classic AppServer Applications to PAS for OpenEdge
http://Move Classic AppServer Applications to PAS for OpenEdge

Progress’

e Server management: Inifialize and update the client session context in the
deactivate procedure. This client context is available through the SESSION:SERVER-
CONNECTION-CONTEXT attribute. The session manager ensures that the context

data is made available to the ABL Session where the client request is executed.

In the session-free connection mode, Connect and Disconnect procedures are NOT run.
Use the activate procedure to initialize or retrieve a client session context. In session-
free connections, asynchronous requests are distributed to multiple ABL sessions and

executed in non-deterministic order (concurrent).

ABL Applications

An ABL Application is a collection of ABL web applications and business logic that operate
within a unigue PROPATH, set of dafabase connections, application configuration such
as locale, and security configuration. ABL applications can be used to manage a group of

Services.

ABL Application URL Considerations

The URL to access ABL business logic is different than the URL used by classic AppServer.
The PAS for OpenEdge instance is the first part of the URL, the ABL Web Application

is the second and the ABL Service with optional parameters is last. Notice that the ABL
application is not part of the URL. This is possible since all ABL web applications must be
uniguely named for the PAS for OpenEdge instance.

https://www.example.com:8810 /HelpDeskSvc /rest/CustomerBE/Customer
/web/Orders/123

/ShoppingSvc /web/Promo

/TaxSvc /web/Tables/PAYG/USA

&

(((F

© 2025 Progress. All Rights Reserved.

ABL Application Packaging and Deployment

ABL Applications offen contain multiple ABL Services, potentially using more than one
fransport. These services are deployed as ABL web applications in PAS for OpenEdge
using a .war file. While you can leave your code directories as is, we recommend using a
modern, best practices application structure that can make ABL Applications easier to
deploy, scale, and extend. This new structure works well for multiple ABL web applications
and sharing behavior and configurations as desired. You can find details on these best
practices at ABL application structure and Optimize PAS for OpenEdge for contfinuous

operations.

Once your application is organized as desired, you can package your application as a
standard WAR file which can be generated from the command line or within Progress

Developer Studio for OE. You can find details on deployment at Export an ABL Web
Application.

Starting in 12.2, ABL Applications can also be deployed as an OpenEdge Application
Archive (OEARD). This specific type of zip file contains web application resources that can
be deployed to a PAS for OpenEdge instance in a single operation. The package can be
exported from or imported to a PAS for OpenEdge instance. You can find details on OEAR
packaging at OpenEdge Application Archive Structure.

And lastly, you can create a ZIP file that includes both the r-code and the deployed
artifacts so that the files can be extracted and registered on a production server. You can

find details on ZIP packaging at Package an instance for production.

Application Security

You will need to migrate your authentication and authorization model. Much of your
security might be handled within your classic AppServer code and will migrate directly.
Consider external security processes and configuration that will need migration especially
for the REST Adapter and classic WebSpeed (i.e, IIS, HTTPD). PAS for OpenEdge
automatically uses the Spring Security framework to perform authentication and
authorization operations on all incoming requests. You can find details on Spring security

at Learn about Spring Security.

Progress © 2025 Progress. All Rights Reserved.

https://docs.progress.com/bundle/openedge-developer-studio-help/page/Export-an-ABL-Web-Application.html
https://docs.progress.com/bundle/openedge-developer-studio-help/page/Export-an-ABL-Web-Application.html
https://docs.progress.com/bundle/pas-for-openedge-management/page/OpenEdge-Application-Archive-Structure.html
https://docs.progress.com/bundle/pas-for-openedge-management/page/Package-an-instance-for-production.html

Progress’

PAS for OpenEdge
Deployment Options

Installation Options

PAS for OpenEdge can be installed as either a server for developing and testing
ABL web applications or as a production server for application deployment. PAS for

OpenEdge is offered with three different licensing modes:

¢ A development mode product: Progress Development Application Server for
OpenEdge (Progress Dev AS for OE) is configured as a web server for developing and

festing OpenEdge applications.

e A production mode product: Progress Production Application Server for OpenEdge
(Progress Prod AS for OE) is configured as a secure web server for OpenEdge
application deployment. This product enforces security best practices. You must make
several configuration changes before you can run and deploy your applications to a

production instance.

¢ Alimited production mode product: Progress Application Server for OpenEdge
Lite (PAS for OE Lite) is configured as a secure web server for OpenEdge application

deployment. Again, configuration changes are required.

The difference between a development and production PAS for OpenEdge is mainly

a matter of security configuration. A development PAS for OpenEdge instance allows
unrestricted access by a user or a group of users and is appropriate for initial migration
and development efforts with PAS for OpenEdge. A production PAS for OpenEdge
instance restricts access o everyone except authorized users and limits control to
system administrators and is useful for testing, staging, and production. Performance
and load festing should always be done on a production PAS for OpenEdge where
resource sharing is limited. Additionally, there is a hybrid mode where you can install
both development mode and production mode in a single OpenEdge installation.

This hybrid installation allows you to create a PAS for OpenEdge instance with a

development mode configuration and the load testing capabilities of production mode.

You can find details on PAS for OpenEdge product modes at About development and

production instances.

© 2025 Progress. All Rights Reserved.

https://docs.progress.com/bundle/pas-for-openedge-introduction/page/PAS-for-OpenEdge-Lite.html
https://docs.progress.com/bundle/pas-for-openedge-management/page/About-development-and-production-instances.html
https://docs.progress.com/bundle/pas-for-openedge-management/page/About-development-and-production-instances.html

Progress’

ABL Application Deployment

Once your application package is built, it is ready to be deployed to one or more PAS for
OpenEdge instances. The PAS for OpenEdge instance directory is self-contained and
can be easily duplicated or moved from staging to a production environment. You can
find details on deployment to PAS for OpenEdge at Deploy an OpenEdge Application

Archive using fcman import.

Advanced Deployment Options

PAS for OpenEdge is available as a confainer that can be used to deploy ABL
applications using Docker and Kubernetes. Container technology in Docker and
Kubernetes provides a more efficient model of deployment with better resource
utilization than virtual machines. Orchestration using Docker Swarm and Kubernetes can
be used to run multiple PAS for OpenEdge containers providing high availability and
scalability.

Container images for PAS for OpenEdge (12.2, 12.7,12.8) are available on Docker Hub
and Progress ESD. PAS for OpenEdge is pre-installed and configured for HTTPS access

in the container. You can use the PAS for OpenEdge container in a CI/CD pipeline.

You can build an image for your application that can be deployed with PAS for
OpenEdge using the sidecar contfainer pattern. Alternatively, you can build a single
custom image with PAS for OpenEdge and your application together. Using the

same image(s) through the pipeline stages (build, test, deploy) allows for repeatable,
consistent results everywhere that it is deployed. You can build a new image and run it
through the CI/CD pipeline and use a deployment strategy (for example: rolling updates)
to update/upgrade your application. You can deploy your application as a container on-

premises and on the cloud.

Overall, deploying ABL applications using container technology allows for faster and

easier deployments and upgrades.
Related Resources:

e Learn about PAS for OpenEdge in a Docker container

e https://hub.dockercom/r/progresssoftware/prgs-pasoe

© 2025 Progress. All Rights Reserved.

https://docs.progress.com/bundle/pas-for-openedge-docker-containers/page/Learn-about-PAS-for-OpenEdge-in-a-Docker-container.html
https://hub.docker.com/r/progresssoftware/prgs-pasoe

Using Archive Libraries with an ABL Application

OpenEdge 12.7 introduced archive libraries Capl file extension), a collection of r-code
similar to procedure libraries (p1 file extension), with support for signing and validation of
the r-code. You can use archive libraries to organize the r-code of an ABL application and
improve runtime performance and enhance the security of the application by ensuring the

r-code in the library has not been corrupted or compromised.

You can use the PROPACK utility to create an archive library and optionally add attributes
(signature policy, validation policy, vendor, version, and custom attributes). The attributes
are written fo a manifest file. The signature policy and validation policy can be set to only

allow r-code in archive files that have been signed.

You can use the PROSIGN ufility to sign and verify the archive library. Any task can be

used fo create, sign, and verify archive libraries and integrate them into a CI/CD pipeline.

From the ABL, you can use the Progress.Archive.ArchiveInfo class fo access

the information from a manifest file for a given archive library.

Properties in the Progress.Archive.Archivelnfo class can be used to access the main
attributes of the manifest file: SignaturePolicy, ValidationPolicy, Vendor,
Version, and others. The GetValue() method of the class can be used to access

custom aftributes.

For a PAS for OpenEdge environment, you can specify archive libraries Capl) in the
PROPATH configuration in the openedge.properties file. Many libraries shipped
with OpenEdge are provided as signed archives in addition fo the existing procedure

libraries.

Archive libraries can be used to enhance the organization, performance, and security of

ABL applications.
Notes:
o Compression is not available for archive files Capl).

e Memory-mapped libraries are only available for procedure libraries (p1) files.

Progress © 2025 Progress. All Rights Reserved.

Related Resources:

e Manage Libraries

e Use the PROPACK ufility

e Use the PROSIGN utility

e Use Ant tasks to create, sign, and verify archives

e |ibraries and PROPATH

e Access information in a manifest file

Using Automatic Database Reconnection with PAS for
OpenEdge

The Automatic Database Reconnection functionality was infroduced in OpenEdge 12 o
support Continuous Operations. This functionality allows for automatically connecting
o an alternate database if the connection to the primary database fails. An alternate
database is typically a replication target database, but it can also be a backup, or some

other database.

This functionality is provided using the —autoReconnect parameter. It applies
to OpenEdge clients (GUI and TTY). It does not apply to PAS for OpenEdge sessions.
However, you can use the Activate Procedure to achieve this behavior with a PAS for

OpenEdge session.

The following configuration can used o automatically reconnect to a database in a PAS for

OpenEdge application:

1. Write a parameter file with the configuration to connect to the databases

(primary and alternate databases).

Example:

autoreconnect.pf -db sports2020 -H dbserver0 -S 20000
-ct 1 -dbaltl “sports2020 -H dbserverl -S 20001” -dbalt2
“sports2020 -H dbserver2 -S 20002” -retryConnect 1

-retryConnectPause

Progress © 2025 Progress. All Rights Reserved.

https://docs.progress.com/bundle/openedge-abl-manage-applications/page/Manage-Libraries.html
https://docs.progress.com/bundle/openedge-abl-manage-applications/page/Use-the-PROPACK-utility.html
https://docs.progress.com/bundle/openedge-abl-manage-applications/page/Use-the-PROSIGN-utility-to-sign-and-verify-an-archive.html
https://docs.progress.com/bundle/openedge-abl-manage-applications/page/Use-Ant-tasks-to-create-sign-and-verify-archives.html
https://docs.progress.com/bundle/openedge-abl-manage-applications/page/Libraries-and-PROPATH.html
https://docs.progress.com/bundle/openedge-abl-manage-applications/page/Access-information-in-a-manifest-file.html

Progress’

2. Specify the parameter file in the openedge.properties file for the PAS for

OpenEdge instance to connect on startup.

Example:
agentStartupParam=-T “${catalina.base}/temp” -pf /psc/wrk/

autoreconnect.pf

3. Write a procedure file to connect to the database if it is not connected. This
program should be available to PAS for OpenEdge through the PROPATH.

Example:
// dbconnect.p IF NOT CONNECTED(“sports2020”) THEN CONNECT

“-pf /psc/wrk/autoreconnect.pf”.

4, Specify the dbconnect.p procedure filein sessionActivateProc

property in the openedge.properties file for the PAS for OpenEdge instance.

Example:

sessionActivateProc=dbconnect.p
With the configuration specified above, PAS for OpenEdge can reconnect to the database
when a request is performed. Using Automatic Database Reconnection in an ABL
application deployed using PAS for OpenEdge can improve the high availability of the
application.

Related Resources:

e Learn about automatic database reconnect

e Automatic Database Reconnect for ABL Clients

e Activate procedure

Deploying PAS for OpenEdge Applications to the Cloud

You can deploy PAS for OpenEdge n-tier applications (Database, Data Services, Web UD
fo the cloud to increase availability, flexibility, and scalability. There are three migration
approaches that are commonly used to deploy applications to the cloud: rehosting,
re-platforming, and re-architecting. You can apply these to deploy PAS for OpenEdge

applications to the cloud.

© 2025 Progress. All Rights Reserved.

https://docs.progress.com/bundle/openedge-abl-manage-applications/page/Learn-about-automatic-database-reconnect.html
https://docs.progress.com/bundle/openedge-video-collection/page/Automatic-Database-Reconnect-for-ABL-Clients.html
https://docs.progress.com/bundle/pas-for-openedge-develop-applications/page/Activate-procedure.html

Progress’

With the rehosting approach (also called lift and shift), you would deploy the application to
the cloud without modifying it. This is the simplest approach. You would use EC2 instances
(AWS) or virtual machines (Azure) to run the servers for your PAS for OpenEdge n-tier
application. In this approach, you can use a private cloud (VPC) to have a private network

and increase security. You can also use a load balancer to access the application.

With the re-platforming approach, you would change the way that select components of
your application are deployed and take advantage of cloud functionality. This requires
medium effort. For example, you can make a template for the PAS for OpenEdge servers

o use auto-scaling to be able to scale on-demand.

The re-architecting approach corresponds fo reviewing the architecture of your application
and changing its components to use cloud native functionality. This approach is more

involved and requires a greater effort.

You can also use container technologies to deploy PAS for OpenEdge and use container
services or managed Kubernetes services. For example, you could build a container image
for your application using your CI/CD pipeline (on-premises or on the cloud) and deploy

the single image to the cloud using a rolling update as the deployment strategy.
You can use OpenEdge Replication to provide redundancy for the database and deploy
the servers on multiple availability zones. The servers for PAS for OpenEdge and Web Ul

running with auto-scaling functionality can also be deployed on multiple available zones.

Overall, deploying your PAS for OpenEdge application to the cloud can bring benefits to
the availability, flexibility and scalability of the application depending.

Related Resources:

e Moving Your OpenEdge Application to the Cloud

Deploying PAS for OpenEdge Applications with
OpenEdge Command Center

OpenEdge Command Center (OECC) is a modern web-based console to manage OpenEdge
databases and PAS for OpenEdge instances. It is comprised of two major components, the
OECC Server and the OECC Agent. You can use it to manage both on-premise and Cloud
resources. The OECC Agent also provides support for OpenTelemetry metrics that you can

access from popular Application Performance Management tools CAPM).

© 2025 Progress. All Rights Reserved.

https://www.progress.com/campaigns/openedge/webinars/evolve-oe-app-to-cloud-webinar

Progress’

The cloning functionality can be used fo clone a Progress Application Server (PAS) for
OE instance to multiple OpenEdge installations. This makes it easier to work with load

balancing and provides high availability for PAS for OpenEdge.

You can use OECC to deploy and visualize ABL applications (and Web applications) on a
PAS for OpenEdge instance.

The OpenTelemetry support of the OECC Agent can be used to query performance
metrics for the OpenEdge database and for PAS for OpenEdge from an Application
Performance Monitoring C(APM) solution such as Elastic APM, Dynatrace, NewRelic and
ofhers fo view the performance metrics. You can also configure it with Prometheus and

Grafana.

OECC also includes a REST API that you can use to automate operations. OpenEdge
Command Center simplifies the management of the OpenEdge platform and brings
productivity gains for its day-to-day management.

Related Resources:

e | earn about OpentEdge Command Center

e Clone a PAS for OpenEdge instance

e Deploy ABL applications or ABL web applications

e Monitor OpenEdge resources using the OpenEdge Command Center agent

PAS for OpenEdge
Configuration

PAS for OpenEdge offers flexible configuration for each instance, replacing the system-
wide $DLC/properties/ubroker.properties configuration file used for

classic AppServer with an instance specific the instance-dir/conf/openedge.
properties file. There is no shared properties file that can be referenced by multiple PAS
server instances. The PAS for OpenEdge product is in the OpenEdge installation under the
SDLC/servers/pasoe. There you will find the shared libraries, utilities, configuration files,
and default templates used to create PAS for OpenEdge instances. Configuration is file-
based where the default configuration can be found in SDLC/servers/pasoe/conf

and this is used as the starfing point for all new instances.

© 2025 Progress. All Rights Reserved.

https://docs.progress.com/bundle/openedge-command-center-olh/page/Learn-about-OpenEdge-Command-Center.html
https://docs.progress.com/bundle/openedge-command-center-olh/page/Clone-a-PAS-for-OpenEdge-instance.html
https://docs.progress.com/bundle/openedge-command-center-olh/page/Deploy-ABL-applications-or-ABL-web-applications.html
https://docs.progress.com/bundle/openedge-command-center-olh/page/Monitor-OpenEdge-resources-using-the-OpenEdge-Command-Center-agent.html?_gl=1*1i435y8*_gcl_au*MTQyNTc5NDAzNy4xNzM4MzI0MjY1*_ga*NzgyNTU3ODE0LjE3MzgzMjQyNjU.*_ga_9JSNBCSF54*MTczODU5NTM0NC4yLjEuMTczODYxMDE0NC40NC4wLjA.

» Progress’

When a new PAS for OpenEdge instance is created, the relevant artifacts from
SDLC/servers/pasoe are copied to the instance home directory instance-dir.
The instance can then be customized for its ABL application, ABL web applications, ABL

service transports, and security in the instance specific configuration files as shown below:

ROOT level
PASOE Instance PASOE Instance
I n Sta nce I evel instance_dir/conf instance_dir/conf
ABL | | ABL application ABL application ABL application
a pp eve instance_dir/ablapps/ instance_dir/ablapps/ instance_dir/ablapps/
ABLApp_dir/conf ABLApp_dir/conf ABLApp_dir/conf
WEBapp WEBapp
WEba pp Ievel instance_dir/webapps/ instance_dir/webapps/

WebApp_dir/ WebApp_dir/
WEB-INF WEB-INF

When migrating from classic AppServer, each named AppServer section will become its
own ABL application specific openedge.properties file in the PAS for OpenEdge
instance directory. Environment variables for the classic AppServer that were set in the
ubroker.properties file are now set in a script file in the instance-dir/bin
directory with a _ setenv suffix. You can find the list of configuration files at Property
files and details on the PAS for OpenEdge Instance structure at Instance directories.

There are several tools available for configuration including command line scripts,

REST APIs, OpenEdge Management and OpenEdge Explorer. Your classic AppServer
configuration can be converted to the new openedge.properties format using the
S$DLC/bin/paspropconv tool which maps classic properties into the appropriate PAS
for OpenEdge properties. You can find the list of available tools at PAS for OpenEdge

configuration tools.

20 © 2025 Progress. All Rights Reserved.

https://docs.progress.com/bundle/pas-for-openedge-introduction/page/Property-files.html
https://docs.progress.com/bundle/pas-for-openedge-introduction/page/Property-files.html
https://docs.progress.com/bundle/pas-for-openedge-introduction/page/Instances.html
https://docs.progress.com/bundle/pas-for-openedge-management-122/page/PAS-for-OpenEdge-configuration-tools.html
https://docs.progress.com/bundle/pas-for-openedge-management-122/page/PAS-for-OpenEdge-configuration-tools.html

Progress’

The major configuration files for a PAS for OpenEdge instance are in the

instance-dir/conf directory:

openedge.properties Application specific properties similar fo ubroker.properties, and
some PAS-specific properties. Edits are always needed here and can be

done using OEPROP or OpenEdge Management.

catalina.properties Tomcat specific properties used by the webserver. Small edits such
as port values are normally needed here using PASMAN for system-
wide commands or TCMAN if you are in the instance directory. See
instance-dir/conf/catalina.properties.README for more

information.

jvm.properties Contains a list of the Java JVM startup command line options. Small
edits such as JVM memory are normally needed here using your

favorite text editor.

appserver.properties Specifies Java properties used by PAS for OpenEdge and ABL web
applications. Edits are not normally needed here but if done use tcman.
See instance-dir/conf/appserver.propertes.README for

more information.

You can find details on configuring your instance at Migrate classic AppServer properties

and the property migration utility at Migrate classic AppServer properties to PAS for
OpenEdge using PASPROPCONV.

Note: With PAS for OpenEdge, multiple sessions are possible within a single MS Agent.
This is in contrast to the one-to-one mapping used by classic AppServer. Tuning
parameters for min/max/initial agents should be tested and adjusted as necessary,
particularly for connections/sessions per agent within PAS for OpenEdge. You can find

details at Modify the environment variables.

© 2025 Progress. All Rights Reserved.

https://docs.progress.com/bundle/pas-for-openedge-management/page/OEPROP.html
https://docs.progress.com/bundle/pas-for-openedge-management/page/PASMAN.html
https://docs.progress.com/bundle/pas-for-openedge-reference/page/TCMAN-Reference.html
https://docs.progress.com/bundle/openedge-migrate-classic-appserver/page/Migrate-classic-AppServer-properties.html
https://docs.progress.com/bundle/openedge-migrate-classic-appserver/page/Migrate-classic-AppServer-properties-to-PAS-for-OpenEdge-using-PASPROPCONV.html
https://docs.progress.com/bundle/openedge-migrate-classic-appserver/page/Migrate-classic-AppServer-properties-to-PAS-for-OpenEdge-using-PASPROPCONV.html
https://docs.progress.com/bundle/pas-for-openedge-management/page/Modify-the-environment-variables.html

PAS for OpenEdge Runtime

PAS for OpenEdge Transports

As stated earlier, PAS for OpenEdge replaces the classic AppServer, WebSpeed, REST
Adapter, and Web Services Adapter (WSA). To support these different protocols, HTTP/S
requests sent to PAS for OpenEdge have a transport identifier as a key component of the

URL. The fransports available are:

Transport URL Path Notes

APSV /apsv Supports the OpenEdge AppServer protocol (binary) over HTTP/S
REST /rest Supports REST RPC using a .paar file; replaces REST Adapter
SOAP /soap Supports SOAP 11; replaces WSA

WEB /web Supports RESTful APIs and compatibility for classic WebSpeed

applications; replaces classic WebSpeed

For production environments, you must enable the supported transports for the instance
inthe instance-dir/conf/openedge.properties file since these are all

disabled by default. You can find details on fransports at Transports and Services and

related configuration at Deployment artifacts.

PAS for OpenEdge Instances

PAS for OpenEdge is a Web Application server based on Apache Tomcat® and the
OpenEdge MSAgent. For this purpose, PAS for OpenEdge supports ABL web applications
accessed by an HT TP-specific request-response programming model and the MSAgent
runs ABL code.

PAS for OpenEdge comes with a default ABL application containing an empty ABL web
application (oceabl.war). This web application is used to control the security access
normally based on the licensing modes in the previous section. Once your PAS for
OpenEdge instance is created, you will add your ABL code, ABL services, and perform

additional configuration for your deployment needs.

Progress © 2025 Progress. All Rights Reserved.

https://docs.progress.com/bundle/pas-for-openedge-introduction-122/page/Transports-and-services_2.html
https://docs.progress.com/bundle/pas-for-openedge-management/page/Deployment-artifacts.html

Progress’

The -Z parameter identifies the security model when a new PAS for OpenEdge instance is

created. The configuration set per -Z value affects the ROOT web application as follows:

-Z value Webapps ABL Services Default ABL Use case
deployed by enabled Security model
default

Dev oeabl.war as All fransports are enabled. Anonymous Development
ROOT Default WebHandler supports

WebSpeed requests

Prod oeabl.war as All fransports are disabled. Anonymous Production
ROOT Default WebHandler rejects all
requests:

« 405/Method Not Allowed

« or501/Not Implemented

Pas noaccess.war N/A N/A Build Pipeline
as ROOT

It is the responsibility of the administrator to update the security model according to
application requirements. If a -z parameter is not specified, the value of the web server
appserver.properties:psc.as.security.model defaults to the license mode.

You can find details on -z at About security models.

You can replace this ROOT application at your discretion but note that Tomcat requires

that there always be a ROOT application. You can find more details at The ROOT
application.

You can also deploy additional ABL web applications as described in the Deployment
Architecture and Configuration section in this document. You can also deploy the
management web applications, manager.war and oemanager.war, during the

creation of development instances using the —f option.

Programming Considerations for PAS for OpenEdge
Application Models

The OpenEdge application classic AppServer supported four different server-state caching
models in its ABL Sessions: state-reset, state-aware, stateless, and state-free. Each of these
offers the OpenEdge client’s developer a choice of who mainfains state across sequential
client requests, with the choices being the ABL Session or the ABL business application.
The new ABL Session caching models in PAS for OpenEdge are grouped into two
categories of TCP connection managements: Session-managed and Session-free. Session-

managed uses a single TCP connection to pipeline execution of all ABL client requests

© 2025 Progress. All Rights Reserved.

https://docs.progress.com/bundle/pas-for-openedge-management/page/About-security-models.html
https://docs.progress.com/bundle/pas-for-openedge-introduction/page/The-ROOT-application.html
https://docs.progress.com/bundle/pas-for-openedge-introduction/page/The-ROOT-application.html

Progress’

over that logical connection. Session-free uses a pool of single TCP connections to create
the appearance of concurrently executing ABL client requests over that logical connection.
It is important to understand the PAS for OpenEdge behavior fo properly emulate your

existing functionality in the two Application Models available in PAS for OpenEdge.

Note: This facet of application design does not indicate which software architectural
model the business application uses because all are stateful architectures, regardless of

the name assigned by OpenEdge.

The Session-managed Application model C(APSV/SOAP) is designed for business
applications o support a single transaction across multiple requests from the same client,
returning intermediafe results with each request until the fransaction is completed. In this
case, the client holds a persistent connection to the application server until the transaction
is complete. Requests can be routed to multiple ABL sessions unless the connection

is bound which will send all requests from the client to the specific ABL session that
performed the connection. There are also considerations regarding the request context.
Use the SERVER-CONNECTION-CONTEXT, SERVER-CONNECTION-ID, SERVER-
CONNECTION-BOUND, and SERVER-CONNECTION-BOUND-REQUEST, attfributes to

manage context for a Session-managed Application model. You can find more details on

session-managed programming at Session-managed programming.

The Session-free Application model (REST/WEB/SOAP) is designed for business
applications that return a complete result, starting and ending any transactions, in a single
request. Thus, the server maintains no context for any client that it services. Requests
from a session-free client are handled by any available ABL session in any available multi-
session agent that supports the required business application. The session-free client

has each of its server requests executed by an available ABL session chosen by the PAS
for OpenEdge session manager from its pool of ABL sessions. In this application model,
multiple requests from a single client can be executed in parallel, as PAS for OE resources
permit. The more ABL sessions that are available to handle requests for a given business
application, the more requests that the application can handle simultaneously from a

single client.

If context is required between requests, you can use the Activate and Deactivate event
procedures fo initialize and clean-up for each request. For confext such as a login foken or
client context, the information must be passed on every request and response to provide
the context between ABL sessions since there is no guarantee a request will return to

the same ABL session it ran a previous request on. Use the CURRENT-REQUEST-INFO
attribute and CURRENT-RESPONSE-INFO attribute fo maintain this context for a Session-
free Application model. This model supports REST, WEB, and SOAP transports. You can

find more details on session-free programming at Session-free programming.

© 2025 Progress. All Rights Reserved.

https://docs.progress.com/bundle/openedge-abl-reference-122/page/SERVER-CONNECTION-CONTEXT-attribute.html
https://docs.progress.com/bundle/abl-reference/page/SERVER-CONNECTION-ID-attribute.html#SERVER-CONNECTION-ID-attribute
https://docs.progress.com/bundle/abl-reference/page/SERVER-CONNECTION-BOUND-attribute.html#SERVER-CONNECTION-BOUND-attribute
https://docs.progress.com/bundle/abl-reference/page/SERVER-CONNECTION-BOUND-attribute.html#SERVER-CONNECTION-BOUND-attribute
https://docs.progress.com/bundle/abl-reference/page/SERVER-CONNECTION-BOUND-REQUEST-attribute.html#SERVER-CONNECTION-BOUND-REQUEST-attribute
https://docs.progress.com/bundle/pas-for-openedge-develop-applications/page/Session-managed-programming.html
https://docs.progress.com/bundle/abl-reference/page/CURRENT-REQUEST-INFO-attribute.html#CURRENT-REQUEST-INFO-attribute
https://docs.progress.com/bundle/abl-reference/page/CURRENT-RESPONSE-INFO-attribute.html#CURRENT-RESPONSE-INFO-attribute
https://docs.progress.com/bundle/pas-for-openedge-develop-applications/page/Session-free-programming.html

You can find more details on PAS for OpenEdge programming at Programming for a PAS

for OpenEdge application model.

Connection Models

Software applications architectures operate using either a stateful or stateless connection
model. Stateful models employ a logical/physical connection between a client and

server with the expectation that a sequence of client requests maintain state information
subsequent requests can use. Stateless models do not employ state information, and each

request is a completely self-contained operational unit.

A PAS for OpenEdge client may be bound or un-bound to an ABL Application’s single
ABL Session. This replicates the Classic AppServer’s programming model for stateful client
connections. The difference lies in all ABL Sessions operating in Classic AppServer are
required to operate in one of the server-state caching models. PAS for OpenEdge lifts that
restriction and permits each ABL Application’s ABL Session to transition to any of the four

server-state caching models per execution of a client request.

The use of HTTP Cookies to synchronize client and server state is a common way stateful
web application use fo execute sequences of client requests where each request depends on
the final state of the previous request. A common web application behavior is to eliminate
the Cookies if they have not been used in a certain period, the purpose being fo recover
server memory and caching resources that can be used for other active clients. The effect
this behavior has on the client is that should the HT TP Cookie, or the HT TP Session cached
data it references, expire or is deleted, the synchronization of a stateful application’s client
and server is lost. The net effect is the same as losing a TCP connection — you have to restart
the client’s logical connection to the server with the knowledge that all state information

is lost, and new state information must be initialized. The connection mechanism for both
Session-managed and Session-free Application models is the same. You use the CONNECTQO
method on a server object handle to create the appropriate connection from a client to PAS
for OpenEdge. It is important to understand connection modes and how they affect the

binding between a client and a PAS for OpenEdge instance.

In classic AppServer, the operating modes supported for client connections are defined
in ubroker.properties with each classic AppServer instance supporting only one
operating mode.

Progress © 2025 Progress. All Rights Reserved.

https://docs.progress.com/bundle/pas-for-openedge-develop-applications/page/Programming-for-a-PAS-for-OpenEdge-application-model.html
https://docs.progress.com/bundle/pas-for-openedge-develop-applications/page/Programming-for-a-PAS-for-OpenEdge-application-model.html

Progress’

With PAS for OpenEdge, the client controls the connection mode by specifying either the
session-managed or session-free mode in the CONNECT () method. This means that a
single PAS for OpenEdge instance can support connections from both session-managed
and session-free ABL clients and replicates the classic AppServer behavior in triggering

the connect and disconnect event procedures.

When establishing a connection, the client defines the connection mode using a new
connection parameter session-model. Once connected, requests from that client
execute in the first free ABL Session regardless of whether the connection is session-

managed or session-free.

To emulate the state-managed operating modes of the classic AppServer, the client
will create a session-managed connection from the client to PAS for OpenEdge, which
automatically runs the specified CONNECT and DISCONNECT event procedures.

To emulate the state-aware and state-reset behavior, you need to also bind the connection
in the CONNECT procedure, unbind and QUIT in the DISCONNECT procedure to return
the ABL Session to ifs initialized state. You can find details on migrating Operating Modes

to Application Models at Migrate classic AppServer operating modes and on binding the

connection at Migrate classic state-aware operating mode.

Caching Options

An application can choose whether state information (context) is cached by the client or
the server. Client-side state caching is an architectural choice for stateful web applications
where the application server generates a block of application state and delivers it o its
client, which caches it and passes it to the next application server to execute its next client
request. The application server uses the client supplied application state information to
execute the request and then updates and returns it to the client so that it can be used by

the next client request execution.

Server-side state caching is an architectural choice for stateful web applications where the
application server generates a block of application state, and caches it for use to execute
subsequent client requests. To synchronize the cached state for exactly one client and its
ABL application the server’s application will employ the use of HT TP Cookie functionality
made available to it by PAS for OpenEdge. The application client’s responsibility is to echo
the HTTP Cookie it receives along with each application server request and to remove
the Cookie when instructed to do so by the application (via the application server). The
physical form of cache storage chosen by the application server varies by use-case, but
the common design is fo pass a reference to its storage, known only to the application
server, inside the HTTP Cookie. The variation on this theme is found when the application

state is very small in size and can be effectively become the content of the HT TP Cookie.

© 2025 Progress. All Rights Reserved.

https://docs.progress.com/bundle/openedge-migrate-classic-appserver/page/Migrate-classic-AppServer-operating-modes.html
https://docs.progress.com/bundle/openedge-migrate-classic-appserver/page/Migrate-classic-state-aware-operating-mode.html

Connection State and Behavior

The behavior of PAS for OpenEdge is controlled by the client. It depends on the
combinations of application architecture, client connection types, client/server-side

application state caching, and client-ABL Session binding.

The OpenEdge application classic AppServer supported four different server-state caching
models in its ABL Sessions: state-reset, state-aware, stateless, and state-free. Each of
these offers the OpenEdge client’s developer a choice of who maintains state across
sequential client requests, with the choices being the ABL Session or the ABL business
application. The ABL Session caching models are grouped into two categories of TCP
connection managements: Session-managed and Session-free. Session-managed uses

a single TCP connection to pipeline execution of all ABL client requests over that logical
connection. Session-free uses a pool of single TCP connections fo create the appearance

of concurrently executing ABL client requests over that logical connection.

The following fable illustrates the combinations of client and server connections and the

resulting behavior.

Client HTTP/S Server
MS-Agent
ABL Session . Cachin .
. App Stat ABL Webapp ABL Session 9 ABL Session
Type connection ; State/ID . for Stateful s
: model Transport connection . Bound
model - clients
Session-
APSV tate- t
Managed: Stateful |_S|T-|?|:\:/er S(:q:nrueaslc; ABL Session Yes
State-reset
Session-
State: HTTP -
Managed: Stateful Cookie' AP:_\I{_I?;/er S'r(an::mal:/!?)re ABL Session Yes
OpenEdge: State-aware ookie
AVM
Session- 9 I -
Java, .NET M:Z:;gd- Stateful Identity: APSV over Stateless Application Application
Stateless HTTP header HTTP control control
Session- I s
BT Stateful APSV over I Application Application
HTTP control control
State-free
Session-
Managed: Stateful SO:?;F\J/er State-reset ABL Session Yes
State-reset State: HTTP
Session- Cookie’ SOAP over
Managed: Stateful HTTP State-aware ABL Session Yes
SOAP over State-aware Identity:
HTTP ion- HTTP header
rj:;:ozd_ Stateful SOAP over Stateless Application Application
gec: HTTP control control
Stateless
Session- .
Identity: SOAP over Application Application
M d: Stateful State-f
o A HTTPheader HTTP AR control -

Progress © 2025 Progress. All Rights Reserved

Type

Any program
with HTTP
support

Any program
with HTTP
support

Progress’

Client

ABL Session
connection
model

N/A

N/A

HTTP/S Server
MS-Agent .
App Stat ABL Weba ABL Session S ABL Session
PP State/ID PP . for Stateful
model Transport connection . Bound
clients
type
Application
State: HTTP State-free client-side N/A
Cookie (;a(:hing5
Stateless Rest over
Identity: HTTe Statet AppIicaT.ign
HTTP header tate-free server.—5| be N/A
caching
State: HTTP AP
.. State-free client-side N/A
Cookie .
Statel Web over caching
ateless
Identity: HTTP Application
h Y(-j State-free server-side N/A
HTTP header caching

PAS for OpenEdge
Management

Managing a PAS for OpenEdge Instance

The OpenEdge Manager web application (cemanager.war) manages PAS for
OpenEdge instances through a REST API for remote administration of the ABL web
applications and MSAgent. You can find more details about the oemanager web app at

Manager applications.

The main command-line utility for managing PAS for OpenEdge instances is TCMAN,
which supports a wide variety of operations that range from creating, configuring, and
delefing an instance to controlling the deployment of ABL web applications (and other
web applications) contained within an instance. You can find details on TCMAN at TCMAN

Reference.

You can perform the same management operations using OpenEdge Management and
OpenEdge Explorer. You can find details at Configure a PAS for OpenEdge instance with

OpenEdge Management.

© 2025 Progress. All Rights Reserved.

https://docs.progress.com/bundle/pas-for-openedge-reference/page/TCMAN-Reference.html
https://docs.progress.com/bundle/pas-for-openedge-reference/page/TCMAN-Reference.html
https://docs.progress.com/bundle/openedge-management-pas-for-openedge/page/Configure-a-PAS-for-OpenEdge-instance-with-OpenEdge-Management.html
https://docs.progress.com/bundle/openedge-management-pas-for-openedge/page/Configure-a-PAS-for-OpenEdge-instance-with-OpenEdge-Management.html

Deployment Architecture and Configuration

ABL Applications in PAS for OpenEdge often contain multiple ABL Services, potentially
using multiple transports. These services are deployed as ABL web applications in PAS for
OpenEdge using a war file. While you can leave your code directories as is, we recommend
using a modern, best practices application structure that can make ABL Applications

easier to deploy, scale, and extend.

The OpenEdge Manager application (cemanager.war) manages PAS for OpenEdge
instances through a REST API for remote administration of the ABL web applications
and MSAgent. It duplicates the administration APl supported by the JMX inferface from
Tomcat, but it uses JSON input/output payloads instead. You can find more details about

the oemanager web app at Manager applications. You can find details on migrating

your configuration from classic AppServer to PAS for OpenEdge at Migrate Server

Configuration and Management.

Additionally, PAS for OpenEdge comes preconfigured with a web application oeabl.
war (ROOT) which is a pre- deployed ABL web application that can be used to run your
ABL code simply by updating the PROPATH and configuration for the PAS for OpenEdge

instance. The business logic is available through this ROOT application automatically.

All properties files should be edited through API calls or set using OpenEdge Management
and OpenEdge Explorer. You can find details at Configure a PAS for OpenEdge instance

with OpenEdge Management.

HealthScanner

A new feature in OpenEdge 12 is the PAS for OpenEdge HealthScanner. It can detect
potential problems with a PAS for OpenEdge instance so that the instance can be taken
out of service before a failure occurs. The HealthScanner continuously monitors key
system health metrics, such as CPU health, REST ping health, HT TP request health, and
disk space and memory health, and generates an overall score. If the score falls below a
certain threshold, a server instance can be taken out of service by an elastic load balancer
and replaced before any disruption of service is incurred. You can find details at Use the

OpenEdge HealthScanner.

Progress © 2025 Progress. All Rights Reserved.

https://docs.progress.com/bundle/pas-for-openedge-introduction/page/Manager-applications.html
https://docs.progress.com/bundle/openedge-migrate-classic-appserver/page/Migrate-Server-Configuration-and-Management.html
https://docs.progress.com/bundle/openedge-migrate-classic-appserver/page/Migrate-Server-Configuration-and-Management.html
https://docs.progress.com/bundle/openedge-management-pas-for-openedge/page/Configure-a-PAS-for-OpenEdge-instance-with-OpenEdge-Management.html
https://docs.progress.com/bundle/openedge-management-pas-for-openedge/page/Configure-a-PAS-for-OpenEdge-instance-with-OpenEdge-Management.html
https://docs.progress.com/bundle/pas-for-openedge-management/page/Use-the-OpenEdge-HealthScanner.html
https://docs.progress.com/bundle/pas-for-openedge-management/page/Use-the-OpenEdge-HealthScanner.html

Progress’

Application Tracing

Deferred logging is a feature of PAS for OpenEdge fo record stack trace information
immediately preceding a multi-session agent crash. It also can be used fo run an on-
demand monitoring check on an instance through an API. Deferred logging keeps a
separate memory buffer from the regular agent logging. By using a separate memory
buffer, deferred logging can help keep the regular agent log to a minimal size, while
providing another type of logging for reconstructing agent crashes or monitoring the
application without impacting performance. You can find details on deferred logging at
Use deferred logging in PAS for OpenEdge.

Application Monitoring

OpenEdge Management and OpenEdge Explorer can also be used to monitor PAS for
OpenEdge server performance and display performance statistics. You can find details at

Monitor PAS for OpenEdge instances.

Migration Strategy

This section outlines a high-level approach for migration from classic AppServer or
WebSpeed application to PAS for OpenEdge. There are four steps recommended to

consider achieving the best migration outcome.

Review Visualize Determine
Current Target Migration Migrate
Architecture Architecture Approach

Review Current Architecture

To migrate successfully, your current application should be reviewed to understand
its architecture, components, and functionality. When studying an application several
questions will inevitably be raised. Progress recommends that you create a diagram of

your current architecture:

© 2025 Progress. All Rights Reserved.

https://docs.progress.com/bundle/pas-for-openedge-management-122/page/Use-deferred-logging-in-PAS-for-OpenEdge.html

Progress’

e Identify OpenEdge products and versions in use

o Classic AppServer and/or WebSpeed Brokers (ubroker.properties)
e Application Modes: Stateless, State-free, State-Aware, State-Reset
o (Client Types: session-free, session-managed
e Use of persistent/singleton/single-run procedures
o Adapters: AIA, WSA, REST Adapter

e Web Servers, Load-balancers, and NameServers
e Clients used in the application: GUI, Web, or API-based
e Application Databases (conmgr.properties)
e Identify bafch processes run on the same business logic and databases
Other important questions fo consider:
e Architecture
Does your application need 32-bit Windows support?
Are there 3rd party components that need special consideration?
e Deployment
e Runs on-premise, in the cloud, or hybrid?
e How many servers are needed fo run the application?
e Areyou running on Linux, Windows, AlX, and Solaris?
e TCP Ports, Firewall Rules.
e How is the application built and packaged?

e Areyou using a Cl/CD pipeline for deployment?

With all the high-level components identified and the communication paths defined, it will

be easy to visualize the components that will need to be replaced as part of the migration.

© 2025 Progress. All Rights Reserved.

» Progress’

(optional)

Name Server

Visualize Target Architecture

Define the OpenEdge products that you will use in the new architecture. Consider
Database Replication, OpenEdge Authentication Gateway, Multi-tenancy, in addition to
PAS for OpenEdge. Remember PAS for OpenEdge eliminates the need for specialized
adapters (AIA, WSA, REST) from classic AppServer and the WebSpeed Messenger since all
communication to the business logic is managed by the transport types.

The following diagram compares the deployment architectures of classic AppServer (leff) and
WebSpeed (right) with the streamlined deployment architecture of PAS for OpenEdge (center).

. PAS for OE
Classic AppServer Classic WebS: i
HTTPR/S Client [ABL [HTTP/S)
& Client Client
WEB
REST
Web Server (OE SOAP Web Server
Adapters) APSV 5 (WebSpeed
§ § Messenger)
AppServer { \ =
AIA TomCat £B o
0 = f
state-aware MSAgents - WebSpged
¥ Transaction
AppServer Server

AlA
stateless

. AppServer
REST N t

Single PASOE Instance
AppServer handles all transports
SOAP and session states

Broker

Agent

Agent
Agent

(40

You might want to identify new requirements for your application during the migration.
Typical changes include communication mechanisms used between system components
or moving to an asynchronous messaging model. It is also a good time to consider
deployment environment changes including:

e Operating system change - e.g., DB on AIX, PAS on Linux

» Hardware Decisions & Control: Self-hosted or Cloud

e Advanced Topics: Clustering, Docker, Kubernetes, Load Balancing, etfc.

o Firewall rules for new ports (classic AppServer versus PAS for OpenEdge, HTTP)

e Moving from 1 port per classic AppServer/WebSpeed broker...
e 1port minimum for a single PAS for OpenEdge instance, with 1+ ABL Applications

32 © 2025 Progress. All Rights Reserved.

Progress’

When replacing classic AppServer and WebSpeed components with PAS for OpenEdge,
bear in mind that a single PAS for OpenEdge ABL Application can replace multiple
classic AppServers and WebSpeed, since PAS for OpenEdge does not define the state

or transport as part of the server configuration. To properly phase the migration, it is
importfant fo identify whether these new requirements are integral for the migration itself

or if they can be added incrementally after the initial migration.

With a new target architecture, you can consider additional goals for modernizing your

application. Common application modernizations include:

¢ High Availability — Uptime considerations

e Redundancy - Failover or DR options

e Scalability - Cluster or scale for load balancing

e User identity — SSO or federated identify provider

o Database — move from self-service (shared memory) to networked (client-server)

You can select one or many modernizations to consider as part of your target architecture.

Progress Professional Services can assist you in this journey following a prescriptive

modernization approach that follows a suggested reference architecture. They can help
identify the high priority application imperatives and business goals for your organization.

You can see more details in the OpenEdge whitepaper on Application Evolution.

Plan Migration Approach

It is imporfant to plan your migration and become familiar with the migration steps and
differences between your current and target architectures before beginning your migration.

You can find many migration documents aft KB Arficle: Migrating fo OpenEdge 12.

Move to OpenEdge 12.8 and PAS for OpenEdge

You can do a migration directly fo OpenEdge 12.8 from 11.7 classic AppServer and
WebSpeed applications to PAS for OpenEdge including your database and environment.
During migration you can fake advantage of the new online database operations,
alternate database connections, automated connection failover and load balanced PAS
for OpenEdge instances as well as enhanced security quickly. The high-level steps in

migration will include:

© 2025 Progress. All Rights Reserved.

https://www.progress.com/services/consulting/openedge
https://www.progress.com/resources/papers/progress-consulting-services-modernization-blueprint
https://community.progress.com/s/article/Migrating-to-OpenEdge-12

Progress’

« DB Migration from OpenEdge 11 to OpenEdge 12 or OpenEdge 10 to OpenEdge 12

e Installing a supported JDK (Note: Java JDK removed from install media in 12.2 and

laten)

e Move application source and configuration to PAS for OpenEdge

e Change client connections (no more AppServer[DC], now HTTP)

e Understanding file permissions and security changes

e Re-compilation of code to compatible r-code

Other Considerations

The PAS for OpenEdge architecture is designed for stateless, highly available and scalable
communication. This is a vastly different runtime environment than classic AppServer and
WebSpeed. It is often necessary to refine your development and deployment processes
when moving fo PAS for OpenEdge. The top areas to explore are:

e Inefficient code base

o Distributed development

e Automated cleanup scripts used due to leaks, DB locks

You can find details at Differences between classic AppServer, WebSpeed Transaction
Server and PAS for OpenEdge.

This is a good opportunity fo evaluate your testing strategy. Do you depend on manual
and/or automated testing to validate the functionality? As you implement new system
feafures such as scalability, consider how you will test this. Also consider this opportunity
to update/enhance your build to a continuous integration and continuous deployment (Cl/
CD) model. PAS for OpenEdge provides many configuration options and the build process

can be set up to reuse your build and deployment tools for multiple ABL Applications

© 2025 Progress. All Rights Reserved.

https://docs.progress.com/bundle/openedge-database-management/page/Convert-an-OpenEdge-Release-11-Database-to-OpenEdge-Release-12.html
https://docs.progress.com/bundle/openedge-database-management/page/Convert-an-OpenEdge-Release-10-database-to-OpenEdge-Release-12.html
https://docs.progress.com/bundle/openedge-migrate-classic-appserver/page/Migrate-client-connections-to-PAS-for-OpenEdge.html
https://docs.progress.com/bundle/openedge-migrate-classic-appserver/page/Differences-between-classic-AppServer-WebSpeed-Transaction-Server-and-PAS-for-OpenEdge.html
https://docs.progress.com/bundle/openedge-migrate-classic-appserver/page/Differences-between-classic-AppServer-WebSpeed-Transaction-Server-and-PAS-for-OpenEdge.html

4 Migrate

Migration of your applications from classic AppServer and WebSpeed to PAS for OpenEdge
requires a repackaging of your code in a new way. It is important to look at the various
components of the application and then determine how each component, each logical piece

of the application will be migrafed and the proper sequence.

ABL Applications often contain multiple ABL Services, potentially using multiple tfransports.
These services are deployed as ABL web applications in PAS for OpenEdge using a .war
file. While you can leave your code directories as is, we recommend using a modern, best
practices application structure that can make ABL Applications easier to deploy, scale,

and extend. This new structure works well for multiple ABL web applications and sharing
behavior and configurations as desired. You can find details on these best practices at ABL_

application structure. And Optimize PAS for OpenEdge for continuous operations.

There are some useful tips and additional material references at KB Arficle: Migrating

to OpenEdge 12 and PAS for OpenEdge Architecture and Design and Implementation

Considerations.

Migration Tools and Utilities

There is a plethora of command line tools designed to support your migration and future

development. These include:

Name Purpose
paspropconv Harvest/convert properties from classic AS/WS (1-Time)
tcman PAS for OpenEdge instance management;

For example:

. tcman create - Creates a new PAS for OpenEdge instance

¢ tcman deploy/undeploy - Deploy or undeploy ABL web
applications, and indirectly ABL applications

tcman Web application management;

For example:
*« deploy - deploy a web application

. enable - start a web application

oeprop [-f] Modify or merge options to openedge.properties

secprop Adjust security options fo oeablSecurity.properties

ProgreSS © 2025 Progress. All Rights Reserved.

https://docs.progress.com/bundle/openedge-migrate-classic-appserver/page/ABL-application-structure.html
https://docs.progress.com/bundle/openedge-migrate-classic-appserver/page/ABL-application-structure.html
https://docs.progress.com/bundle/pas-for-openedge-management/page/Optimize-PAS-for-OpenEdge-for-continuous-operations.html
https://community.progress.com/s/article/Migrating-to-OpenEdge-12
https://community.progress.com/s/article/Migrating-to-OpenEdge-12
https://docs.progress.com/bundle/pas-for-openedge-introduction/page/PAS-for-OpenEdge-architecture.html
https://docs.progress.com/bundle/pas-for-openedge-develop-applications-122/page/Design-and-Implementation-Considerations.html
https://docs.progress.com/bundle/pas-for-openedge-develop-applications-122/page/Design-and-Implementation-Considerations.html

Progress’

e Create a “script” for any repeated actions
e ANT + PCT is great for this

e Third-party products
e Text Editors: Notepad++, Atom, etc.

e File Comparators: BeyondCompare, WinMerge, etc.

e ANT Tasks
e Create an OpenEdge Application Archive using an Ant Build

e Tailor an ABL Application installation using Ant Build
e Package an ABL WebApp ANT project

e Package REST services

e Generate a Data Object Service Catalog file

Note: This requires installation of PDSOE and an available project

e DevOps Testing
e Deployment Processes — Ensure all artifacts get from point A to point B
e CI/CD Pipeline — Perform essential actions without a user inferface

e Load testing — useful to identify memory leaks and identify resource contention

e Operational Testing
e Exercising Code - Using different clients; users versus admins
e Authorization in place and working
e 0OS/Path Changes

e Report output, data imports, etc.

Application Performance and Inefficient Programming
Practices

It is important to understand that with multiple sessions running in a single process, the
impact of each session’s memory usage becomes compounded. The high-performance
architecture of PAS for OpenEdge can and will amplify any inefficient coding practices which
may include untuned queries or lingering objects and handles which can noticeably affect
your run-time execution and performance. Poorly written, untuned queries, mismanaged
objects and leaky code can affect your runtime execution and performance. It is important fo
identify and fix these situations in your application code to avoid potential scalability issues.

You can find details at Find memory leaks using ABL object tracking.

You can use PAS for OpenEdge Server-Side Profiling to gather and monitor run-time
performance data about ABL applications running on a PAS for OpenEdge instance. You can

find details at Use Server Side ABL Performance Profiling.

© 2025 Progress. All Rights Reserved.

https://docs.progress.com/bundle/pas-for-openedge-management/page/Create-an-OpenEdge-Application-Archive-using-an-Ant-Build.html
https://docs.progress.com/bundle/pas-for-openedge-management/page/Tailor-an-ABLApp-installation-using-Ant.html
https://docs.progress.com/bundle/openedge-developer-studio-help/page/Package-an-ABL-WebApp-ANT-project.html
https://docs.progress.com/bundle/openedge-developer-studio-help/page/Package-REST-services.html
https://docs.progress.com/bundle/openedge-developer-studio-help/page/Generate-a-Data-Object-Service-Catalog-file.html
https://docs.progress.com/bundle/pas-for-openedge-management/page/Find-memory-leaks-using-ABL-object-tracking.html
https://docs.progress.com/bundle/pas-for-openedge-management-122/page/Use-Server-Side-ABL-Performance-Profiling.html

With PAS for OpenEdge, networked database connections can have performance issues if
not configured correctly. You can find details on configuration best practices for networked

connections at KB: Performance issues between PAS instance connecting from one

machine to database server on another machine.

Rightsizing in a Nutshell

The inevitable question is “what hardware do | need to run my application on PAS for
OpenEdge?” which is greeted with an inevitable “it depends.” Though a more appropriate
generalization is as follows: size your system fo provide enough resources to run your
application without being wasteful. To avoid coming up short on sysfem resources at

peak times it may be typical to want to over-size a server, resulting in a machine that sits
mostly idle. More recently the realm of distributed applications relies on load-balancing
multiple, smaller servers to satisfy increased demand only when the situation requires. The
answer to this problem is scaling, but first we still need to establish a suitable machine for

a scalable cluster.

In either case there is a cost fo that computing power and will likely be a larger factor to
operational budget— though the first step is to achieve the best application performance

on a single server first. You can find details on tuning best practices at Tune PAS for

OpenEdge instances. Additional details on Server Sizing can be found later in this

document at Server Sizing.

Cloud Computing

Cloud computing providers (AWS, Azure, etc.) offer a range of virtualization families,
meaning machines specially funed by purpose. From general purpose machines to
compute-, memory-, or stforage-optimized classes of machines. In addition to the varied
machine families, there are fluctuations in pricing which are constantly being updated.
Depending on your needs it should be possible to find the right combination of machine
specifications to appropriately support your application. You will need enough system
resources to support typical operation while maintaining some amount of buffer for
unexpected spikes. This includes but is not limited to CPU’s (cores, multi-threading),

memory, disk speed (IOPS), and network throughput.

Progress © 2025 Progress. All Rights Reserved.

https://community.progress.com/s/article/performance-issues-between-pas-instance-connecting-from-one-machine-to-database-server-on-another-machine
https://community.progress.com/s/article/performance-issues-between-pas-instance-connecting-from-one-machine-to-database-server-on-another-machine
https://docs.progress.com/bundle/pas-for-openedge-management/page/Tune-PAS-for-OpenEdge-instances.html
https://docs.progress.com/bundle/pas-for-openedge-management/page/Tune-PAS-for-OpenEdge-instances.html

Progress’

On premise

Building a system to self-host is also an option, whether as bare metal or virtualization
within your own corporate cloud. Just like any cloud solution there needs to be a balance
between just enough computing power without overcommitting processors or memory

that would not be used.

“Scale-Up or Scale-Out?”

Briefly, rightsizing is a balance between increasing resources (bigger components) versus
adding parallel resources (more components) to handle load. Factors should and will
involve knowledge (familiarity), skills (comfort), and budget (cost). For the most part, IT
shops are vastly familiar with scaling up by building bigger servers or adjusting vCPU/
memory allofments in virtualized environments. The use of a load-balancer can also be

considered to improve throughput.

The key process is to test, monitor, adjust, and repeat as necessary to find the proper
balance of resources and parameters for every application. Be sure to test your application
under true production load. While your code might run in a test environment for a single
user, it is critical to perform load fests fo identify memory leaks, open handles, etc. that can
cause problems. Identifying these conditions early gives you an opportunity to mitigate

these issues using PAS for OpenEdge fimeouts and other configuration settings.

Once it is understood how an application should perform at peak with specific resources, it

should be possible to extrapolate a scaled environment.

ABL Client Migration

In the classic OpenEdge AppServer, the operating modes for session-managed client
connections are determined in the classic AppServer configuration. The possible operating
modes for session managed connections are state- reset, state-aware, and stateless. For

session-free client connections, the operating mode is always state-free.

In PAS for OpenEdge, the client continues to connect using the session-managed or
session-free models, which results in the same client-side behavior as with the classic
AppServer. However, the session model is simplified in PAS for OpenEdge, since now there

is only one supported connection model, HTTP/S.

© 2025 Progress. All Rights Reserved.

A PAS for OpenEdge session-managed connection is conditionally bound to the same
ABL session based on the setting of the SESSION:SERVER-CONNECTION-BOUND-
REQUEST attribute. A PAS for OpenEdge session-free connection operates with the same
behavior as the classic AppServer running in the state-free operating mode. You can find

details at Migrate classic AppServer operating modes.

ABL Client Connections

When you migrate ABL clients to PAS for OpenEdge, it is necessary to change your
connection code to use a PAS for OpenEdge appropriate URL for the connection to your
new ABL Web Application. A PAS for OpenEdge URL for ABL clients contains the ABL
web application name and transport. This is normally provided to the CONNECT method

on the server object handle used to access the PAS for OpenEdge instance.

The classic AppServer scheme of AppServerDC (direct connect) is not available in PAS
for OpenEdge. Instead, all communication is done over HTTP/S using a URL for the
connection.

The syntax and examples of supported URLs for ABL clients are:

Syntax: -URL scheme://host:port//[web-app]/apsv

[-sessionModel Session-free]

Example: -URL https://localhost:8810/apsv -sessionModel

Session-free

You can convert an ABL client connection from classic AppServer to APSV as shown

below:
Classic AppServer: =S port -H host -AppServer asbrokerl -ssl

ROOT Web App: -URL https://host:port/apsv -sessionModel

Session-free

Named Web App: -URL https://host:port/custSvc/apsv

-sessionModel Session-free

Progress © 2025 Progress. All Rights Reserved.

https://docs.progress.com/bundle/openedge-migrate-classic-appserver/page/Migrate-classic-AppServer-operating-modes_2.html

Progress’

You can convert an ABL client AIA connection from classic AppServer to APSV the same

way:

Classic AppServer: -URL https://host:port/aia/Aia?AppService=
asbrokerl

-sessionModel Session-free

ROOT Web App: -URL https://host:port/apsv -sessionModel

Session-free

Named Web App: -URL https://host:port/custMgt/apsv

-sessionModel Session-free

Note: The AppService name from a classic AppServer AlA connection is not used in the
PAS for OpenEdge URL. The ABL web application serves the same purpose in PAS for
OpenEdge URLs (to determine which ABL application is used to service requests from a

client).

When PAS for OpenEdge runs behind a load balancer, it is necessary to configure the load
balancer and PAS for OpenEdge to bind a client session to a particular PAS for OpenEdge
instance using a sticky session. After the initial request is satisfied by a Web application,
subsequent requests are routed to the same ABL Web application running on the same

PAS for OpenEdge instance. You can find details on sticky sessions at Clusters and sticky

sessions.

The connection lifecycle for ABL clients in classic AppServer is often the entire life of the
client session. With PAS for OpenEdge, a connection is not persistent, and timeouts are
more likely to occur due to the nature of the underlying HTTP/S protocol. It is important
fo make sure your client code manages sessions by uftilizing the updated CONNECTEDO
behavior available in OpenEdge 12.4 and later. In earlier PAS for OpenEdge releases,

it is recommended to write a ping.p procedure on the server to validate whether the
connection is still valid. When a connection has timed ouft, you will need to detect

this situation and reconnect, as necessary. You can find details on PAS for OpenEdge

client connections at Migrate client connections and Connect clients with new PAS for

OpenEdge transports.

© 2025 Progress. All Rights Reserved.

https://docs.progress.com/bundle/pas-for-openedge-management/page/Clusters-and-sticky-sessions.html
https://docs.progress.com/bundle/pas-for-openedge-management/page/Clusters-and-sticky-sessions.html
https://docs.progress.com/bundle/openedge-migrate-classic-appserver/page/Migrate-client-connections-to-PAS-for-OpenEdge.html
https://docs.progress.com/bundle/openedge-migrate-classic-appserver/page/Connect-clients-with-new-PAS-for-OpenEdge-transports.html
https://docs.progress.com/bundle/openedge-migrate-classic-appserver/page/Connect-clients-with-new-PAS-for-OpenEdge-transports.html

Progress’

REST Client Migration

REST clients for PAS for OpenEdge always connect using the session-free application
model. When you migrate REST services from classic AppServer/REST Adapter to PAS
for OpenEdge, you can use the same URL for your REST Service. To do this you simply
configure your PAS for OpenEdge instance and ABL web application name, so the URLs

are identical fo the ones used to access the classic AppServer.

You can migrate existing REST ABL Services to the PAS for OpenEdge REST transport in

one of the following ways:

1. Use existing REST service archives —PAAR files can be deployed as-is into a PAS for
OpenEdge instance using the deployREST command. This will retain the same URL
scheme as classic AppServer. You can find details at Migrate REST URLs.

2. Create new REST services using the same or a new URL scheme. In this model, create
the REST Service in Progress Developer Studio for OpenEdge using annotations
(recommended) or the visual GUI mapper. You can find details on annotations at

Annotate ABL resources using the Define Service Interface wizard and the GUI

mapper at REST Expose Editor.

3. Convert fo WEB services using the built-in Progress OpenEdge Data Object Handler
(DOH) or you can write your own custom WebHandler. The WEB fransport uses ABL
code to dispatch HTTP/S requests to the right business logic. You can annotate your
source code to create a Progress Data Object (PDO) Service or define the service
using a map file. More information on the WEB transport can be found at Develop an
ABL service using the WEB transport.

REST Client Connections

When using the REST transport described in Options 1and 2 above, you can use the
same URLs by naming the ABL web application the same as your rest-app-name used
for classic AppServer. You can also omit (ROOT) or change the web application name to

define a new URL scheme.
The syntax and examples of supported URLs for REST clients are:

Synfax: https://host:port/[web-appl/rest/service-name/

resource-path

© 2025 Progress. All Rights Reserved.

https://docs.progress.com/bundle/openedge-migrate-classic-appserver/page/Migrate-REST-URLs.html
https://docs.progress.com/bundle/openedge-abl-develop-services-122/page/Annotate-ABL-resources-using-the-Define-Service-Interface-wizard.html
https://docs.progress.com/bundle/openedge-developer-studio-help/page/REST-Expose-Editor.html
https://docs.progress.com/bundle/openedge-abl-develop-services/page/Develop-an-ABL-service-using-the-WEB-transport.html
https://docs.progress.com/bundle/openedge-abl-develop-services/page/Develop-an-ABL-service-using-the-WEB-transport.html

Example: https://localhost:8810/samplewebapp/rest/CRMService/

Customer

You can convert a REST client from classic AppServer to REST as shown below (hote: no
URL change):

Classic AppServer: https://host:port/CustMaint/rest/CustomerSve/

CustConnect

Root Web App: https://host:port/rest/CustomerSvc/CustConnect

Named Web App: https://host:port/CustMaint/rest/CustomerSvc/

CustConnect

You can find details on PAS for OpenEdge REST services at Runtime architecture and data

access and Develop an ABL service using the REST transport.

Using WEB Transport for New or Converted REST
Services

In addition to the REST fransport, you can also access REST services using the more
flexible WEB transport. While the WEB transport is defined later in this document for
classic WebSpeed migrations, you can also use the WEB transport to support RESTful
APIs. You can consider a conversion of existing REST services or create new REST

Services using the Web transport as detailed in Develop an ABL service using the WEB

fransport.

SOAP Client Migration

You can migrate existing SOAP ABL Services to the PAS for OpenEdge SOAP fransport.
ABL SOAP clients for PAS for OpenEdge connect using the state-managed application
model. When you migrate, it is necessary fo change your connection code to use a PAS
for OpenEdge appropriate URL fo connect fo your new ABL Web Application or ROOT.
Connection URLs for SOAP clients use the SOAP transport followed by a WSDL path that

includes a URL query parameter targetURI fo specify the web service o access.

Existing SOAP services can be deployed to a PAS for OpenEdge instance, using the
deploySOAP command.

ProgreSS © 2025 Progress. All Rights Reserved.

https://docs.progress.com/bundle/openedge-data-objects-guide/page/Run-time-architecture-and-data-access.html
https://docs.progress.com/bundle/openedge-data-objects-guide/page/Run-time-architecture-and-data-access.html
https://docs.progress.com/bundle/openedge-abl-develop-services-122/page/Develop-an-ABL-service-using-the-REST-transport.html
https://docs.progress.com/bundle/openedge-abl-develop-services/page/Develop-an-ABL-service-using-the-WEB-transport.html
https://docs.progress.com/bundle/openedge-abl-develop-services/page/Develop-an-ABL-service-using-the-WEB-transport.html

Progress’

Connections using the SOAP Transport
The syntax and examples to bind an ABL client using the CONNECT() method are:

Syntax: -WSDL http://host:port//[oceabl-web-appl]/soap/wsdl
?targetURI=urn:service-name

Example: -WSDL https://localhost:8810/samplewebapp/soap/wsdl
?targetURI=urn:CustSvc

You can convert the ABL client CONNECT parameter from WSA to SOAP as shown below:

WSA: -WSDL https://localhost:8810/wsa/wsal/wsdl
?targetURI=urn:CustSvc
ROOT Web App: -WSDL https:// localhost:8810/soap/
wsdl?targetURI=urn:CustSvc
Named Web App: -WSDL https:// localhost:8810/CustMaint
/soap/wsdl
?targetURI=urn:CustSvc

You can find details on SOAP client connections at Migrate WSA URLSs to use the SOAP

fransport. You can find details on PAS for OpenEdge SOAP services at Develop an ABL
service using the SOAP fransport and Manage SOAP transports.

WebSpeed Migration

There are some significant differences between classic WebSpeed and PAS for OpenEdge.
Primarily, the WebSpeed Messenger is removed from PAS for OpenEdge as the Tomcat

web server provides a direct conduit from HTTP/S web requests to the ABL runtime.

You migrate existing classic WebSpeed applications to the PAS for OpenEdge WEB
fransport. WebSpeed migration is often a straight-forward process as most classic
WebSpeed source code will run once compiled against the new target version of
OpenEdge and deployed on the ABL Application's PROPATH within a PAS for OpenEdge
instance. When an HTTP/S request for the WEB transport is received, it is forwarded fo a
specialized ABL class called a WebHandler, which will process and dispatch the request to

your business logic.

© 2025 Progress. All Rights Reserved.

https://docs.progress.com/bundle/openedge-migrate-classic-appserver/page/Migrate-WSA-URLs-to-use-the-SOAP-transport.html
https://docs.progress.com/bundle/openedge-migrate-classic-appserver/page/Migrate-WSA-URLs-to-use-the-SOAP-transport.html
https://docs.progress.com/bundle/openedge-abl-develop-services-122/page/Develop-an-ABL-service-using-the-SOAP-transport.html
https://docs.progress.com/bundle/openedge-abl-develop-services-122/page/Develop-an-ABL-service-using-the-SOAP-transport.html
https://docs.progress.com/bundle/openedge-management-pas-for-openedge-122/page/Manage-SOAP-transports.html

Progress’

You can find details at Migrate Classic WebSpeed Applications, What's new and different in

WebSpeed on PAS for OpenEdge and Differences between classic AppServer, WebSpeed

Transaction Server and PAS for OpenEdge.

Note: Both HTML with Embedded SpeedScript Chtml) and CGl Wrapper (p) WebSpeed

programming models are supported in PAS for OpenEdge. Special attention is needed for

HTML Mapped Web Objects as they are not supported by PAS for OpenEdge and require

a conversion of the code base.

Architecture Comparison

The classic WebSpeed architecture and PAS for OpenEdge architecture are shown below:

Classic WebSpeed

OE 11.7.5

HTTPD Server

[
0
O

R =

WebSpeed
Broker OE DB

| |

>

Requests are initially serviced by a web
server for the WebSpeed Messenger.

Optionally, a NameServer may be consulted
to determine the appropriate WebSpeed
broker.

Requests are routed to the WebSpeed broker
to execute business logic against a database.

PAS for OpenEdge
a0 OE 12.2+
[=
258
0o \WEB
ABU'\pp OE DB

——

Requests are always directed to a Web
Application within the PAS for OpenEdge
instance.

WebSpeed requests are handled using the
WEB transport along with a WebHandler.

The business logic executes against a
connected database.

Bootstrapping the WebSpeed Application

The bootstrapping previously done in the web-disp.p file for classic WebSpeed is found

in SDLC/src/web/objects/web-handler.p. If you have customized web-disp.p

then you may need to override the method StartProcedure() fo execute your own

instance specific version of web-handler.p or write a custom WebHandler that extends

the shipped OpenEdge.Web.CompatibilityHandler.

© 2025 Progress. All Rights Reserved.

https://docs.progress.com/bundle/openedge-migrate-classic-appserver/page/Migrate-Classic-WebSpeed-Applications.html
https://docs.progress.com/bundle/pas-for-openedge-introduction/page/Whats-new-and-different-in-WebSpeed-on-PAS-for-OpenEdge.html
https://docs.progress.com/bundle/pas-for-openedge-introduction/page/Whats-new-and-different-in-WebSpeed-on-PAS-for-OpenEdge.html
https://docs.progress.com/bundle/openedge-migrate-classic-appserver/page/Differences-between-classic-AppServer-WebSpeed-Transaction-Server-and-PAS-for-OpenEdge.html
https://docs.progress.com/bundle/openedge-migrate-classic-appserver/page/Differences-between-classic-AppServer-WebSpeed-Transaction-Server-and-PAS-for-OpenEdge.html

WebHandlers

All HTTP/S requests for the WEB transport are forwarded to a specialized ABL class called
a WebHandler, which will process and dispatch the request to your business logic. There

are two built-in WebHandlers that are available for use:

e The OpenEdge.Web.CompatibilityHandler provides compatibility with

WebSpeed SpeedScript and CGl Wrapper applications. This is the default handler
used in an instance in a development environment and must be used if support for

classic WebSpeed is needed in production environments.

e The OpenEdge.Web.DefaultWebHandler handler returns a 405 Method

Not Allowed error for requests not mapped to a specific handler. This is the default

handler used in a production instance

You can also create a custom WebHandler that can parse and process the HTTP/S request
as well as provide an HTTP/S response back to the client. This is useful for splitting apart

the classic WebSpeed URL space, or for extending your classic WebSpeed application.

Connections using the Built-in Compatibility WebHandler

For most classic WebSpeed applications you can use the built-in OpenEdge Web.
CompatibilityHandler. This WebHandler is analogous to the WebSpeed web-disp.p
standard routing and will properly call your business logic as defined in your classic

WebSpeed application.
The syntax and examples of supported URLs for WEB clients are:

Synfax: https://host:port/[oeabl-web-appl]/web/service-name/
service-resource
Example: https://localhost:8810/samplewebapp/web/CRMService/

Customer
You can convert a WebSpeed client to WEB as shown below:

WebSpeed Script: http://webserver/cgi-bin/sample.cgi/getCust.p

ROOT Web App: https://localhost:8810/web/getCust.p

Named Web App: https://localhost:8810/samplewebapp/web/
getCust.p

Progress © 2025 Progress. All Rights Reserved.

https://docs.progress.com/bundle/openedge-abl-api-reference-128/page/OpenEdge.Web.CompatibilityHandler.html
https://docs.progress.com/bundle/openedge-abl-api-reference-128/page/OpenEdge.Web.DefaultWebHandler.html

For most classic WebSpeed applications you can use the built-in OpenEdge Web.
CompatibilityHandler. This WebHandler is analogous o the WebSpeed web-disp.p
standard routing and will properly call your business logic as defined in your classic

WebSpeed application.

Custom WebHandlers

To migrate classic WebSpeed applications with complex routing, you might need fo

create a new custom WebHandler class to implement the necessary customizations.

A custom WebHandler class can be created by either subclassing OpenEdge.Web.
CompatibilityHandler or by writing one from scrafch that implements Progress.
Web.IWebHandler. You will need to map the URLs for a Service to your new custom
WebHandler. You can find details at Create a WebHandler Class.

ABL Services

In PAS for OpenEdge you now have the ability to group classic WebSpeed functionality as
an ABL Service. An ABL Service exposes the functionality contained in the business logic
layer as APIs for client applications to consume. As part of your migration, you can choose
to organize your WebSpeed APIs as one or more ABL Services and map a WebHandler
(built-in or custom) fo the URLs for the service. You can find details at Create ABL

services.

Connections using a Custom WebHandler

When using a custom WebHandler you will need an additional component in the URL

fo properly route the incoming HT TP/s requests to the WebHandler for the WebSpeed
applications with a modified web-disp.p will need a custom WebHandler to implement
complementary customizations. You can convert a WebSpeed client to WEB with a custom

WebHandler as shown below:

WebSpeed: http://webserver/cgi-bin/samplewebapp.cgi/getCust.p

ROOT Web App: https://localhost:8810/web/CRMService/getCust.p

Named Web App: https://localhost:8810/samplewebapp/web/
CRMService/getCust.p

Progress © 2025 Progress. All Rights Reserved.

https://docs.progress.com/bundle/openedge-developer-studio-help-122/page/Create-a-WebHandler-Class.html
https://docs.progress.com/bundle/openedge-modernize-guide/page/Create-ABL-services.html
https://docs.progress.com/bundle/openedge-modernize-guide/page/Create-ABL-services.html

Progress’

Migration of WebSpeed components

The migration process consists of moving the components of your WebSpeed application

to the PAS for OpenEdge environment. The following table provides a summary of the

components of a WebSpeed application, and the migration required for each of them to

PAS for OpenEdge:

Classic WebSpeed

Static Files (HTTPD Server)

CGI Wrapper (p files)

Embedded SpeedScript (.html)
Mapped Web Objects

URL (CGl script mapped to WS)

ubroker.properties

web-disp.p

PAS on OpenEdge

instance-dir/webapps/webapp-name/static/folder
Recompile, place in PROPATH

Recompile, place in PROPATH

Not Supported

URL (HTTP/S)

openedge.properties (paspropconv)

web-handler.p

OpenEdge.Web.CompatibilityHandler

or Custom WebHandler

High-level Migration Steps for WebSpeed Applications

To migrate a classic WebSpeed application to PAS for OpenEdge you can follow the steps

defined in Migrate Classic WebSpeed Applications. In general, you will be performing the

following tasks:

1. Move the application’s static files to a specific folder in the PAS for OpenEdge instance

or within another web server such as Apache, IIS, nginx, etc. The new location of your

static files requires an update fo the URLs used to access your application Ul if it uses

these static files.

2. Update the PROPATH for the instance to include the folders that contain the

application’s r-code.

3. Customize the $DLC/src/web/objects/web-handler.p source file to initialize

your session for shared variables. In classic WebSpeed these were normally defined in

the web/objects/web-util file. These variables include Sel1 fURL, AppURL,
AppProgram, SCRIPT NAME, and PATH __ INFO.

© 2025 Progress. All Rights Reserved.

https://docs.progress.com/bundle/openedge-migrate-classic-appserver/page/Migrate-Classic-WebSpeed-Applications.html

Progress’

Determine whether you can use the built-in compatibility web handler or if you need

fo create a new WebHandler class. If you need a custom WebHandler, your new
WebHandler class must be found in PROPATH for the application, and you need to
configure the PAS for OpenEdge instance properties to map URLs to your WebHandler.

When HTTP/S requests come into the WebHandler, they are dispatched to the actual
business logic, in the case of migration this will be your existing code. If you have
created a custom WebHandler class, you might need to edit your API fo match your

new dispatch methodology.

Enable the WEB transport on the instance and use the preconfigured or custom

WebHandler configuration in the openedge.properties file.

Supporting Classic WebSpeed Client URLs

To maintain the URLs used in your classic WebSpeed applications, you can use Tomcat’s
URL rewrite capabilities, fo map the old URL to the new ones which are prescriptive. To

enable the rewrite valve for an ABL web application:

Edit the ABL Web application context file in instance-dir/webapps/
webapp-name/META-INF/context.xml.

Inside the <Context> element, add the following:
<Valve className="org.apache.catalina.valves.rewrite.

Rewritevalve” />

Create the file instance-dir/webapps/webapp-name/WEB-INF/rewrite.

config to define a rewrite rule for Tomcat.

Your rewrite rule can be simple or complex. The example rule below replaces cgi-
bin with web and adds the next path segment (the scripf) as a query string named
cgi:

this replaces /cgi-bin/script/program.p with /web/
program.p?cgi-script=script RewriteRule (.*)/cgi-bin/(.*)/(.*)

$1/web/$3?cgi-script=$2 [QSA]

You can find details on Tomcat’s rewrite valve by looking at the specific version of Tomcat.

For example, you can find the details for Tomcat 10 at Apache Tomcat 10: The rewrite

value.

© 2025 Progress. All Rights Reserved.

https://tomcat.apache.org/tomcat-10.0-doc/rewrite.html
https://tomcat.apache.org/tomcat-10.0-doc/rewrite.html

Web Transport Configuration

In classic WebSpeed, you configure the WebSpeed Transaction Server and define
features with environment variables and entries in the ubroker.properties file. In
PAS for OpenEdge, this is replaced with the instance specific instance-dir/conf/

openedge.properties file in the ROOT.WEB section as shown below:

[oepasl.ROOT .WEB]
adapterEnabled=1
defaultCookieDomain=
defaultCookiePath=
defaultHandler=0OpenEdge.Web.CompatibilityHandler
srvrDebug=0

You can find information that explains these parameters and their settings in

SCATALINA BASE/conf/openedge.properties.README.

In the WEB transport, requests are dispatched to the ABL procedure is the configuration
mapping of URLs to WebHandlers. The order of the URL mapping is important since an
incoming URL is matched to the first match. This means that more specific URL patterns
should appear before wildcarded mapping. The mapping is part of the PAS for OpenEdge

instance configuration:

e For OpenEdge 122 and later, WebHandlers are configured with the ABL web
application deployed to an instance. Use this properties file instance-dir/
webapps/webapp-name/WEB-INF/adapters/web/service-name/
service-name.handlers fo map URLs to specific WebHandlers. You can find

details on WebHandlers at Deploy web handler services.

e For prior releases, WebHandlers are defined in the file SCATALINA BASE/conf/

openedge.properties.

Mapping of Classic WebSpeed URIs to PAS for OE URIs

In the Classic WebSpeed environment a web server would utilize the WebSpeed
Messenger and a service script to direct requests for an application fo the correct
WebSpeed broker. This occurs by using a CGlI script which defines the WebSpeed service
fo be used, and some application code may use the SelfURL variable to refer to the URI of
the current page. However, PAS for OpenEdge follows a more traditional URI pattern using
webapp names as part of the path, and reserved path names which represent transport

adapters, so the URI patterns are unavoidably incompatible.

Progress © 2025 Progress. All Rights Reserved.

https://docs.progress.com/bundle/pas-for-openedge-management-122/page/Deploy-web-handler-services.html

Progress’

In the situation where users or other applications may need to rely on these old URI
pafterns, we need to modify requests on the fly in a way that PAS for OpenEdge can both
understand the request while the ABL code can react to the old service URI. To do this,
we can override some internal behavior without altering the product code directly. We
accomplish this by leveraging some existing behaviors which still exist in WebSpeed for
PAS for OpenEdge: utilizing the SUPER_PROC environment variable to adjust the super
procedures loaded by WebSpeed and rewriting the requested URIs from the user via the

web server.

First, we need to define the SUPER _ PROC environment variable which will add a
procedure to the persistent procedure stack. To add the environment variable, you

must leverage the startup process for the Tomcat server which looks for files in the
CATALINA BASE/bin directory which confain the suffix setenv.
[bat|sh]. Modifying existing scripts is not recommended, so a new file should be created
as CATALINA BASE/bin/webspeed setenv.[bat|sh] and will define an OS-
appropriate environment variable. In the examples below, this environment variables point

fo a new procedure file called selfurl.p which we will create in a later step.

e For Windows, create a webspeed _ setenv.bat script file in the CATALINA
BASE/bin directory fo set the relevant environment variable to the new procedure

with the following line:

set SUPER _PROC=slurp

e For Unix/Linux, create a webspeed _ setenv.sh script file in the CATALINA
BASE/bin directory fo set the relevant environment variable to the new procedure

with the following line:

export SUPER _PROC=slurp

Next, we need to create the procedure file slurp which will be used to override and extend
the indicia procedure. This internal procedure will convert common CGl variables into ABL
global variables that are accessible from anywhere in the application code. The override
procedure will first execute the original code (via RUN SUPER) then always attempt to
exfract a query parameter called cgi-script from the requested URI if it is present. Place
this file info the PROPATH for the PAS for OpenEdge instance:

© 2025 Progress. All Rights Reserved.

// File: selfurl.p
BLOCK-LEVEL ON ERROR UNDO, THROW.
{src/web/method/cgidefs.i} // Basic CGI variables

PROCEDURE init-cgi:
RUN SUPER.

// example is a request for GET /[g¢di-bin/svgname/sample.p

// the rewrite rules changes that to
// GET /web/sample.p?cgi-script=svcname

IF INDEX (WEB-CONTEXT:GET-CGI-LIST('QUERY':u),, 'cgi-script') GT 0 THEN
DO:

// change_the SCRIPT NAME from /web back to /cgi-bin/svcname

SCRIPT NAME = SUBSTRING (SCRIPT NAME, 1,

I R-INDEX (SCRIPT NAME, '/'))

+ 'cgi-bin/'
+ WEB-CONTEXT:GET-CGI-VALUE ('QUERY':u,
'cgi-script').

// PATH INFO is /sample.p (after /weh) sg _add that on
SelfURL = SCRIPT NAME + PATH INFO.
END.

MESSAGE 'After/SCRIPT NAME:' SCRIPT, NAME.
MESSAGE 'After/SelfURL:' SelfURL.

END PROCEDURE.

The goal of this override is to extract the service name from a query parameter cgi-
script as the global variable SCRIPT _ NAME value. This can then be combined into the
standard global variable Se1 fURL and can be used within the ABL application.

Lastly, we need to provide the URI rewriting rules to convert from Classic WebSpeed to the
new PAS for OpenEdge URI pattern. Place the following into a new file rewrite.config
intf the WEB-INF/ directory of the webapp where the WebSpeed application is served.
RewriteRule (.)/cgi-bin/(.)/(.*) $1/web/$3?cgi-script=$2 [QSA]

This replaces the Classic WebSpeed URI of /cgi-bin/script/path/to/program.p
with /web/path/to/program.p?cgi-script=script

With these changes in place, it should be possible to allow existing links to your application

fo contfinue working with the new PAS for OpenEdge instance, until such time as you can

have users or applications update to the new URI patftern.

ProgreSS © 2025 Progress. All Rights Reserved.

Progress’

Open Client Migration

PAS for OpenEdge supports session-managed and session-free application models which
provide OpenClient with the same connection models as the classic AppServer. A PAS for
OpenEdge session-managed connection is conditionally bound to the same ABL session
based on the setting of the SESSION:SERVER-CONNECTION-BOUND-REQUEST attribute.
A PAS for OpenEdge session-free connection operates with the same behavior as the
classic AppServer running in the state-free operating mode. You can find details at Migrate

classic AppServer operating modes.

Open Client Connections

When you migrafe Java and .NET Open Clients to PAS for OpenEdge, it is necessary
to change your connection code to use a PAS for OpenEdge-appropriate URL for the
connection to your new ABL Web Application. This URL contains the ABL web application

name and fransport. This is normally passed to the Connection object constructor.
The syntax and examples of supported URLs for Open Clients are:

Syntax: scheme://host:port//[web-appl/apsv
Example: https://localhost:8810/apsv

You can convert an ABL client connection from classic AppServer to APSV as shown below:

Classic AppServer: AppServerDC://localhost:8810 -AppServer
asbrokerl -ssl

ROOT Web App: https://localhost:8810/apsv

Named Web App: https://localhost:8810/custSvc/apsv

The connection lifecycle for Open Clients in classic AppServer is often the entire life of the
client session. With PAS for OpenEdge, a connection is not persistent, and timeouts are
more likely to occur due to the nature of the underlying HT TP/S protocol. It is important
fo make sure your client code manages sessions by calling a simple ping.p procedure
on the server fo validate whether the connection is still valid. When a connection has
fimed out, you will need to detect this situation and reconnect, as necessary. Make sure
your Open Client code performs a disconnect when terminating to avoid running out of

resources.

You can find details on PAS for OpenEdge client connections at Migrate client connections

and Connect clients with new PAS for OpenEdge transports.

© 2025 Progress. All Rights Reserved.

https://docs.progress.com/bundle/openedge-migrate-classic-appserver/page/Migrate-client-connections-to-PAS-for-OpenEdge.html
https://docs.progress.com/bundle/openedge-migrate-classic-appserver/page/Connect-clients-with-new-PAS-for-OpenEdge-transports.html

Progress’

Changes & Enhancements

There are changes to highlight in OpenEdge 12.2 and later, related to Open Clients:

Exception handling has been enhanced. In the past O4GL, when an exception (erron)
on the AppServer fook place, a simple error was sent back to the client. In OpenEdge
12 the exception handling has been enhanced to return the error that was raised on
the AppServer. Open Client distinguishes between application, STOP, and system
errors. These can be identified separately, and include the exact error message from
the error raised by the ABL. If you have implemented the previous exception handling,
that will still work. No coding changes are required to take advantage of the new

exception handling.

Object.finalize() method has been removed from some classes as the java
method was deprecated and the use of finalize is no longer considered good practice.
In some cases, finalizeQOhas been replaced with java.lang.AutoCloseable.
Users SHOULD make use of the try-with-resource syntax to take advantage of the
JVM functionality. Not doing so may result in a compiler warning. This construction
ensures prompt release, avoiding resource exhaustion exceptions and errors that may

otherwise occur.

Constructors for Open4GLException and Opend4GLError (and their
subclasses) have been modified fo accept varargs rather than array for some
constructors. If the application is using any of the Open Client exception classes, they
may continue to use them as before, or they can update their code to the newer style

synfax which is more concise. Using the old syntax may result in compiler warnings.

ProxyGen has been modified to generate code that uses the updated syntax and
AutoClosable. Use the OpenEdge 12.2 or later ProxyGen with your existing

proxy projects [xpxg] to generate new executables. You may confinue to use older
generated proxies with the updated 12 Open Client implementation, but it will not take

advantage of the updates.

Performance Improvements in OpenEdge version 12.5 for Java Open Client have
reduced garbage collection and improved concurrency by reducing locking. Both
String concatenation and Integer creation, especially for logging, have been greatly
reduced. This improves the CPU and memory overhead required for GC for java
applications that use Open Client. Locking in high contention areas has been reduced,
improving multiple request concurrency, such as when Java Open Client is deployed

inside a web server.

© 2025 Progress. All Rights Reserved.

e Packaging for the Java Open Client has changed as Progress has been refactoring
classes and jars info a more distributed model. You will need to update your Java
Open Client (O4GL) classpath.

e Javadoc for Java Open Client has been published on the OpenEdge documentation

website.

High Level Migration Steps

Step 1 - Generate proxy class.

Good news, you do not have to recreate your ProxyGen project file. If you have an existing
*xpxg file all you need to do is open that from ProxyGen. Remember to adjust your
compiler to use a supported version of Java. Once you have generated the class files, you
can now import them info your project. Since the method signatures have not changed
you can remove the earlier OpenEdge generated class files. You can find details at

Generate proxies for a Java client and Generate proxies for a NET client.

Step 2 - Update both compile-time and run-time class-path
The above section refers to our re-packaging efforts at Progress which require a change

fo your Java class- path. The following link gives more details. Java Open Client Runtime

Package.

Step 3 - Update connect string and try-with-resource syntax.

Any connection string that you are upgrading from classic to PAS will have to be
converted. The only way to communicate with the AppServer (APSV) on PAS is now
through HTTP or HTTPS. You will have fo change all connection strings from a fraditional
[AppServerDC://172.31.83.251:8210] to [http://172.31.83.251:8220/

apsvl.

While you are making connect string modifications, verify that you have enclosed the
AppObject and Connection objects in try-with-resource syntax. This would be a good time
fo review GC and other expensive constructs such as string concatenation or auto-boxing

of integers.

Step 4 — Deploy and test applications.
At this point you should be able to deploy your application to a test environment and run

fests to verify your code is functioning correctly.

Progress © 2025 Progress. All Rights Reserved.

https://docs.progress.com/bundle/openedge-dotnet-open-clients-122/page/Prepare-to-generate-proxies-for-a-.NET-client-using-ProxyGen-or-Batch-ProxyGen.html
https://docs.progress.com/bundle/openedge-dotnet-open-clients/page/Prepare-to-generate-proxies-for-a-.NET-client-using-ProxyGen-or-Batch-ProxyGen.html
https://docs.progress.com/bundle/openedge-java-open-clients/page/Java-Open-Client-Runtime-package.html
https://docs.progress.com/bundle/openedge-java-open-clients/page/Java-Open-Client-Runtime-package.html

Progress’

Server Sizing
Configuration

Performance tuning should begin at the Tomcat level, ensuring enough threads (read:
executor threads) are available for the total concurrent requests to the PAS for OpenEdge
instance. After that, tuning should move fo the ABL Application level where each ABL
Application is tuned for the Web Apps it must support. The specifics of this process can be

found in the PAS for OpenEdge Tuning Recommendations section of the administration

guide. This illustrates the exact parameters fo alter in the openedge.properties file

as well as how to modify these values using the oeprop command via the command line.

You can find details on available configuration options at Goals and Common Steps for

Tuning PAS for OpenEdge Instances which will address items such as the max sessions

versus max connections as well as the initial sessions value.

For a quick reference and starting point, you can begin your application festing using
some of the recommendations below along with the default values for the Tomcat server
in openedge.properties. Based on extensive testing on AWS the main differences
here versus the documentation links above are the recommendations o start no more
than 20% of your sessions inifially and to increase the new minAvailableSessions
which was added in OpenEdge 12.2.

Property Description and value

maxAgents=2 Maximum number of multi-session agents to start Instances
minAgents=2 Start a new agent if availability is below this value
numInitialAgents=2 Start 2 initially to satisfy the min/max configured

Initial number of multi-session agents to start

agentStartLimit=1 Starts only 1agent at a time if below minAgents

maxABLSessionsPerAgent=20 Default is 200 in OpenEdge 12.2 and later. Maximum ABL

sessions per multi- session agent
maxConnectionsPerAgent=20
numInitialSessions=4 - Default is 200 in OpenEdge 12.2 and later
Start max 20% Maximum connections per multi-session agent

of maxConnectionsPerAgent

minAvailableABLSessions=3 Set to 2 or 3 (new in OpenEdge 12.2, default is 1)

© 2025 Progress. All Rights Reserved.

https://docs.progress.com/bundle/pas-for-openedge-management/page/PAS-for-OpenEdge-tuning-recommendations.html
https://docs.progress.com/bundle/pas-for-openedge-management/page/Goals-and-common-steps-for-tuning-PAS-for-OpenEdge-instances.html
https://docs.progress.com/bundle/pas-for-openedge-management/page/Goals-and-common-steps-for-tuning-PAS-for-OpenEdge-instances.html

Progress’

For best performance, you must determine the optimal settings for the PAS for

OpenEdge properties that control the number of multi-session agents, sessions, and

client connections that a session manager manages. In general, you must consider the
number of clients, the design of your application (including the application model), and the

hardware resources that run your PAS for OpenEdge instance.

The above recommendations are primarily for the use of stateless transports such

as SOAP, REST, and Web where the number of ABL Sessions per agent will equal the
number of Connections per agent. When utilizing the APSV transport it is imporfant fo
remember that it is effectively an emulation of a traditionally stateful connection over a
stateless protocol. Therefore, it may be necessary to greatly increase the value for the
maxConnectionsPerAgent if bound client connections are to be expected. These
would be AppServer requests which utilize persistent procedures or otherwise require

keeping a client connection active even after executing ABL code.

Be sure fo compare your results after adjusting any parameters and make further
adjustments, as necessary. It is advised to change one parameter at a time to accurately

gauge its effect on the results.

Other considerations

For a session-managed application — You must have one ABL session for each client that
connects to the PAS for OpenEdge instance. That is, you need as many ABL sessions as

clients that connect concurrently fo the PAS for OpenEdge insfance.

For a session-free application — You can have one session work on requests for multiple
clients. At a minimum, Progress recommends one server session for each CPU in the
machine. You can expect each multi-session agent to handle requests from up to 20 PAS
for OpenEdge clients (or more). This is your per-agent client load. You can then scale up
the number of agents to support the required multiple of per- session client load fo match
your total PAS for OpenEdge client load. The per-session client load also depends on the
length of time it takes to complete an average client request. The longer it fakes for a
session to complete session requests, the fewer sessions are supported by each session,
and the more sessions you need to handle the total PAS for OpenEdge client load. Thus,

the total number of clients required is very application specific.

You can find details on PAS for OpenEdge tuning at Tune PAS for OpenEdge instances.

© 2025 Progress. All Rights Reserved.

https://docs.progress.com/bundle/pas-for-openedge-management-122/page/Tune-PAS-for-OpenEdge-instances.html

Progress’

Performance Testing
Proper Sizing Based on Performance Tests

e Performance Testing — Ensure code is responding in a fimely manner
e Memory leaks (e.g, ABLObjects)
e Code profiling (inefficiencies, repeated calls)
e Extfernal shared library access

e File and/or process contention

e Capacity Testing — Preparing for concurrent and sustained requests
e The default configs are always wrong for your specific needs!
« Tuning agent/session parameters; min/max limits; initial values

e Adjusting timeouts

For over 15 years the “ATM Test” has been used as a benchmark utility for demonstrating
throughput against an OpenEdge database. In the KB: PAS for OpenEdge - Example
of PAS for OpenEdge Machine sizes for ATM Benchmark on Amazon AWS) the ATM

benchmark was adapted for PAS for OpenEdge and executed on various families of

AWS machines. As part of this guide, the response times of the tests were monitored

and compared to load on both the CPU and memory resources for the machines. The
takeaway was that as machine size (read: as CPU count increased) more concurrent
clients were serviced with lower response times. This was a clear illustration of the process
which ran distinct and repeatable tests, monitored the results, adjusted as needed, and

repeated the process until a suitable response tfime was achieved.

The tests themselves were easily accomplished by use of JMeter to automate requests,
and the “top” command on Linux was used to monitor the performance of the OS image.
In the KB: PAS for OpenEdge - Sizing Your Machine (ATM Benchmark) outlines the

processes for identifying bottlenecks with regards to the ATM Test. A series of factors are

outlined which illustrate how either CPU or memory constraints can affect the application

and how to identify the root cause based on the bottleneck symptoms.

In addition to the server resources were the balance of agents + sessions for each ABL
Application which could be identified through repeated testing. Again, the key takeaway

is found in the Tune PAS for OpenEdge instances section of that same guide: “we advise

running as many connections per agent all on a single agent with as many sessions as it
can handle before performance degrades. This generally gives the best performance and

the best usage of resources.”

© 2025 Progress. All Rights Reserved.

https://community.progress.com/s/article/PASOE-Machine-Sizing-Information
https://community.progress.com/s/article/PASOE-Machine-Sizing-Information
https://community.progress.com/s/article/PASOE-Machine-Sizing-Information
https://docs.progress.com/bundle/pas-for-openedge-management-122/page/Tune-PAS-for-OpenEdge-instances.html

Performance Tooling

The following fools provide metrics which you can use to tune your PAS for OpenEdge

configuration settings.

e OpenEdge HealthScanner — Useful for examining both OS and application

performance in terms of a weighted average either overall or for specific metrics.

e Server-Side ABL Profiler — Can help fo pin-point inefficiencies in code which could be

contributing to slow- running processes.

e OEJMXand REST API Reference for oemanagerwar — Both achieve the same goals

but by different means. Useful for enabling metrics at runtime which can help to
frack memory consumption or identify potential memory leaks. Comparing request
information by fracking ABL performance can be compared to Tomcat requests fo

identify any discrepancies for response times.

e OpenEdge Memory Profiler — Can be used fo analyze the memory usage of ABL

applications and identify excessive memory consumption and memory leaks.

Troubleshooting
Using the Progress OpenEdge Memory Profiler

The OpenEdge Memory Profiler is available starting with OpenEdge 12.8.

You can use this new functionality to analyze the memory usage of ABL applications and

identify excessive memory consumption and memory leaks.

OpenEdge clients (GUI and TTY) and PAS for OpenEdge can generate Memory Profiler
files Coemp extension). These files contain data (snapshots) on the memory usage of
the ABL applications. The files can be imported into the OpenEdge Memory Profiler
Tooling (OEMP) to visualize them. OEMP is a new web-based application with a PAS for
OpenEdge-based backend. The Memory Profiler files and their representation in OEMP

are known as recordings.

Progress © 2025 Progress. All Rights Reserved.

https://docs.progress.com/bundle/pas-for-openedge-management/page/Use-the-OpenEdge-HealthScanner.html
https://docs.progress.com/bundle/pas-for-openedge-management/page/Use-Server-Side-ABL-Performance-Profiling.html
https://docs.progress.com/bundle/pas-for-openedge-management/page/Use-OEJMX-to-manage-and-monitor-an-instance.html#Use-OEJMX-to-manage-and-monitor-an-instance
https://docs.progress.com/bundle/pas-for-openedge-reference/page/REST-API-Reference-for-oemanager.war.html
https://docs.progress.com/bundle/openedge-abl-troubleshoot-applications/page/Memory-profile-recording.html

Progress’

Steps to use the OpenEdge Memory Profiler:
1. Generate a Memory Profiler file.
2. Import the Memory Profiler file intfo the OpenEdge Memory Profiler Tooling.

3. Visualize the recording.

You can find deftails at Profile memory.

Generating a Memory Profiler File

You can generate Memory Profiler files using the new parametfer -profileMemory
with an OpenEdge client (GUI and TTY) and PAS for OpenEdge. You can run an ABL

application either interactively, batch, or server-based (PAS for OpenEdge). Example:

mpro sports2020 -p program.p -profileMemory config applicationURL=/cgi-
bin

1ls -1 memprof.*.oemp

For PAS for OpenEdge, you can specify the -profileMemory as part of the

agentStartupParam property. Example:

agentStartupParam=-T "£{catalina.base}/temp" -db sports2020 -5 20000
-profileMemory /psc/wrk/config

Notes:

e The -profileMemory parameter can only be specified as a startup parameter and
notina .pf file.

e The “config” file can be an empty file. In this mode a default configuration is used.

e By default, the .oemp file is stored in the current working directory for ABL clients and
stored in the work folder for a PAS for OpenEdge environment.

e A Memory Profiler file has the format memprof.<pid>.oemp for ABL clients and

memprof.<pid>.AS-<agentid>.oemp for a PAS for OpenEdge environment.

Importing the Memory Profiler file into the OpenEdge Memory Profiler Tooling

You can copy the generated .oemp file to the OEMP backend upload or import folder(s)

and use the Web Ul to import them to make them ready for visualization.

The OEMP backend can be configured fo automatically import the files.

© 2025 Progress. All Rights Reserved.

https://docs.progress.com/bundle/openedge-abl-troubleshoot-applications/page/Profile-memory.html

Visualizing the recording

Using the Web U, you can show a chart for the snapshots in a recording using the

OpenEdge Memory Profiler Tooling, view snapshot details and compare snapshots.

You can use the Memory Profiler in your applications running in a CI/CD pipeline to
monitor the memory utilization automatically and identify issues between builds of the

application.

Next Steps

The information in this guide is meant to start the journey of migrating your business
applications to PAS for OpenEdge. In addition to the references found throughout this
document, Progress offers self-paced learning and reference material to continue your

migration journey:

e Next steps with PAS for OpenEdge

e Work with PAS for OpenEdge

e PAS for OpenEdge: Machine Sizing Guide

e Manage PAS for OpenEdge

¢ Migrating classic AppServer Applications to PAS for OpenEdge
» Learn About Migrating Classic AppServer Applications to PAS for OpenEdge

o Comparing the architecture of the OpenEdge AppServer and PAS for OpenEdge

e Comparing PAS for OpenEdge to the OpenEdge AppServer

e Video Series

e Migrate classic AppServer Applications to PAS for OpenEdge

e Migrate classic AppServer REST Services to PAS for OpenEdge

e Migrate WebSpeed applications to PAS for OpenEdge
o Deploy ABL, SOAP and REST Applications to PAS for OpenEdge

You can also leverage Progress Professional Services and Progress Education to assist

with your migration efforts.

ProgreSS © 2025 Progress. All Rights Reserved.

https://docs.progress.com/bundle/openedge-migrate-classic-appserver/page/Next-steps-with-PAS-for-OpenEdge.html
https://docs.progress.com/category/openedge-work-with-pasoe
https://docs.progress.com/bundle/pas-for-oe-sizing/page/Overview.html
https://docs.progress.com/bundle/pas-for-openedge-management/page/Learn-about-PAS-for-OpenEdge-administration.html
https://docs.progress.com/bundle/openedge-migrate-classic-appserver/page/Learn-About-Migrating-Classic-AppServer-Applications-to-PAS-for-OpenEdge.html
https://docs.progress.com/category/openedge-archives
https://docs.progress.com/category/openedge-archives
https://docs.progress.com/bundle/openedge-video-collection/page/Migrate-Classic-AppServer-Applications-to-PAS-for-OpenEdge.html
https://docs.progress.com/bundle/openedge-video-collection/page/Migrate-Classic-AppServer-REST-Services-to-PAS-for-OpenEdge.html
https://docs.progress.com/bundle/openedge-video-collection/page/Migrate-WebSpeed-applications-to-Progress-Application-Server-for-OpenEdge.html
https://docs.progress.com/bundle/openedge-video-collection/page/Deploy-ABL-SOAP-and-REST-Applications-to-a-PAS-for-OpenEdge-Instance.html

Progress Professional Services

Progress Professional Services are available to help with your migration to PAS for
OpenEdge. Whether you need improved security or compliance, 3rd party integration, an
API first strategy, scalability, cloud migration or high availability, PAS for OpenEdge is an

enabling technology that will support your initiatives.

For those working with monolithic applications, PAS for OpenEdge facilitates the effort of
evolving and modernizing your application. This datasheet provides common examples
of what is included with the JumpStart offering. However, the actual engagement may be

customized to meet your specific business needs.

Click the button below to download the whitepaper:

Progress Education
Let Progress help you master the latest techniques for simplifying and streamlining the
development, integration, and management of global enterprise business applications with

PAS for OpenEdge.

e Progress Application Server for OpenEdge Administration

e Introduction to Progress Application Server OpenEdge for Developers

e Providing Progress OpenEdge Applications as REST Web Applications

e Building REST services with WebHandler on PAS for OpenEdge

e Progress Application Server for OpenEdge Developers

e Progress Application Server for OpenEdge Administration (PAS for OpenEdge)

About Progress

Progress (Nasdag: PRGS) empowers organizations fo achieve fransformational success in the face of disruptive f /progresssw
change. Our software enables our customers to develop, deploy and manage responsible Al-powered ¥ /progresssw
applications and digital experiences with agility and ease. Customers get a trusted provider in Progress, @ /progresssw

with the products, expertise and vision they need to succeed. Over 4 million developers and technologists in /progress-software
at hundreds of thousands of enterprises depend on Progress. Learn more a om ® /progress_sw_

© 2025 Progress Software Corporation and/or its subsidiaries or affiliates. All rights reserved. Rev 2026/01 RITM0213767

» Progress’

https://www.progress.com/
https://www.facebook.com/progresssw
https://twitter.com/progresssw
https://www.youtube.com/user/ProgressSW
https://www.linkedin.com/company/progress-software/mycompany/
https://www.instagram.com/progress_sw_/?hl=bg
https://www.progress.com/services/education/instructor-led/europe/pas-for-openedge-administration
https://www.progress.com/services/education/openedge/introduction-to-pas-openedge
https://www.progress.com/services/education/openedge/providing-applications-as-rest-web-applications
https://www.progress.com/services/education/instructor-led/europe/building-rest-services-with-webhandlers-on-pasoe
https://www.progress.com/services/education/instructor-led/europe/progress-application-server-for-openedge-developers
https://www.progress.com/services/education/instructor-led/europe/progress-application-server-for-oe-admin
https://www.progress.com/resources/papers/jumpstart-to-progress-application-server-(pas)-for-openedge

