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Foreword

Data integration has been the information systems profession’s most enduring

challenge.

It is almost four decades since Richard Nolan nominated data administration

as the penultimate stage of his data processing maturity model, recognizing that

the development of applications to support business processes would, unless prop-

erly managed, create masses of duplicated and uncoordinated data.

In the early days of database technology, some of us had a dream that we

could achieve Nolan’s objective by building all of our organizations’ databases in

a coordinated manner to eliminate data duplication: “Capture data once, store it

in one place, and make it available to everyone who needs it” was the mantra.

Decentralized computing, packaged software, and plain old self-interest put an

end to that dream, but in many organizations the underlying ideas lived on in the

form of data management initiatives based on planning and coordination of data-

bases—notably in the form of enterprise data models. Their success was limited,

and organizations turned to tactical solutions to solve the most pressing problems.

They built interfaces to transfer data between applications rather than capturing it

multiple times, and they pulled it together for reporting purposes in what became

data warehouses and marts. This pragmatic approach embodied a willingness to

accept duplicated data as a given that was not attractive to the purists.

The tension between a strategic, organization-wide approach based on the dis-

position of data and after-the-fact spot solutions remains today. But the scale of

the problem has grown beyond anything envisaged in the 1970s.

We have witnessed extraordinary advances in computing power, storage tech-

nology, and development tools. Information technology has become ubiquitous in

business and government, and even midsized organizations count their applica-

tions in the thousands and their data in petabytes. But each new application, each

new solution, adds to the proliferation of data. Increasingly, these solutions are

“off the shelf,” offering the buyer little say in the database design and how it

overlaps with existing and future purchases.

Not only has the number of applications exploded, but the complexity of the

data within them is worlds away from the simple structures of early files and

databases. The Internet and smartphones generate enormous volumes of less

structured data, “data” embraces documents, audio and video, and cloud comput-

ing both extends the boundary of the organization’s data and further facilitates

acquisition of new applications.

The need for data integration has grown proportionately—or more correctly,

disproportionately, as the number of possible interfaces between systems

increases exponentially. What was once an opportunistic activity is becoming, in

many organizations, the focus of their systems’ development efforts.

xv



The last decade has seen important advances in tools to support data integra-

tion through messaging and virtualization. This book fills a vital gap in providing

an overview of this technology in a form that is accessible to nonspecialists:

planners, managers, and developers. April Reeve brings a rare combination of

business perspective and detailed knowledge from many years of designing,

implementing, and operating applications for organizations as an IT technician,

manager and, more recently, a consultant using the technologies in a variety of

different environments.

Perhaps the most important audience will be data managers, in particular those

who have stuck resolutely to the static data management model and its associated

tools. As the management of data in motion comes to represent an increasing pro-

portion of the information technology budget, it demands strategic attention, and

data managers, with their organization-wide remit, are ideally placed to take respon-

sibility. The techniques in this book now form the mainstream of data integration

thinking and represent the current best hope of achieving the data administration

goals Nolan articulated so long ago.

—Graeme Simsion
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Introduction

What this book is about and why it’s necessary
Most organizations of middle to large size have hundreds or, more probably,

thousands of applications, each with its own various databases and other data

stores. Whether the data stores are from traditional technologies and database

management systems, emerging technologies, or document management systems,

it is critical to the usefulness of these applications to the organization that they

share information between them. Developing and managing solutions for moving

data between applications becomes an overwhelmingly complex problem unless

addressed using a coordinated approach across an organization. This book

describes a reasonable approach and architecture that enables managing the

cacophony of interfaces in an application portfolio.

The focus of data management by information technology functions tends

to be around the efficient management of data sitting in databases or “persis-

tent” data that sits still. Since currently in most organizations applications are

primarily purchased vendor solutions, managing the data that travels between

systems, applications, data stores, and organizations— the “data in motion”—

should be a central focus of information technology for any organization.

Custom development in most organizations will continue to be more around

the data traveling between applications than the development of new

applications.

What the reader will learn
This book provides an overview of the different techniques, technologies, and

best practices used to manage the passing of data between computer systems

and integrating disparate data together in a large organization environment.

The reader will learn about best practice techniques for developing and man-

aging data integration solutions for an organization and the set of tools, or archi-

tecture, that an organization should have to support a robust organizational data

integration capability, broken down by the various types of data integration that

are relevant: batch, real-time, or big data integration.

All should read Chapter 1 on “The Importance of Data Integration and the

Natural Complexity of Data Interfaces” and Chapter 12 on “Data Integration

Patterns and Hub and Spoke,” which is key to turning the unmanageable com-

plexity of interfaces in an organization into a data layer that can be reason-

ably managed. The information presented in these chapters is the basis for

developing a financial justification for a data integration program in their

organization.
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Who should read this book
This book was written for five categories of people:

• Senior-level business and IT managers

• Enterprise data, application, and technical architects

• Data-related program and project managers, including those for data

warehouses, master data management programs, data conversion and

migration, and data archiving

• Data analysts, data modelers, database practitioners, and data integration

programmers

• Data management students

This book contains references to various types of technology solutions to data

integration problems, but does not require an extensive technical background for

understanding.

Senior Business and Information Technology Managers
Managing the cacophony of interactions and interfaces between the thousands of

applications and databases in most organizations is one of the primary challenges

associated with managing an IT portfolio. Senior-level managers, both those in

information technology and those who need to understand the issues involving

managing an application system portfolio, may be interested in an overview of the

techniques, technologies, and best practices associated with managing the data

traveling around their organization and to other organizations. This area of data

management has previously been viewed almost exclusively of concern to only the

very detailed technical areas of an organization. Besides the fact that managers

should have an understanding of the main parts of their technology investments,

significant gains in productivity are to be obtained through some simple architec-

tural decision in data integration technology and management that no organization

can afford to ignore.

Enterprise Data, Application, and Technical Architects
Enterprise architects, especially those associated with data and application archi-

tecture but also those dealing in more technical components, should certainly have

an understanding of the data integration solutions needed in an organization’s tech-

nical portfolio and architectural planning. The data architecture of every organiza-

tion should include layers supporting data security,business intelligence, database

management, document management, and, certainly, data integration.

Data-Related Program and Project Managers
Program and project managers in data warehousing, master data management,

data conversion, data archiving, business intelligence, metadata, and so on, should

xxii Introduction



have an understanding of the techniques for moving data between applications

and integrating data into and out of data hubs.

Data analysts, data modelers, database practitioners,
and data integration programmers
Many people are working on data integration projects as data analysts, program-

mers, or other titles, and performing all kinds of detailed functions such as ETL

programmers, SOA architects, and data service modelers. A broader understand-

ing of why certain functions are designed or performed the way they are and the

neighboring and emerging technologies in this area can only help to improve their

current effectiveness and future prospects. An understanding of how the work

they are currently doing fits it to the broader framework of the organization’s

technology can help them focus on the most important goals of their work and to

bring to light situations where things are not occurring as intended. Learning

about some of the emerging technologies in this area can help to identify areas of

possible interest and career development.

Data management students
In universities, information technology training tends to focus on programming

and technology training. Database training focuses on creating new individual

databases. In practice, organizations develop a few new databases, but mostly

struggle to manage those already existing. The interaction of thousands of appli-

cations and data stores may be hard for a student to visualize. The set of techni-

ques and technologies developed to solve the various data integration problems

provides an important, wide base of understanding for a student to grasp.

How this book is organized
This book provides an overview of the different techniques, technologies, and

best practices used to manage the passing of data between computer systems and

integrating disparate data together in a large organization environment. Each sec-

tion describes the architecture, or set of tools and technologies, needed to support

the type of data integration capability specified in that section: batch, real-time,

and big data integration. Also included in each section are interviews with experts

in different technologies associated with data integration and case studies show-

casing my own experiences.

Current practitioners in data integration may want to skip forward past the

basic sections to the areas on data integration with which they are not yet famil-

iar, such as Part IV on big data integration.

Most existing books in this area tend to focus on the implementation of spe-

cific technologies or solutions, but here is a broad inventory of data integration

solutions, the various techniques, their benefits, and challenges.
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Part 1: Introduction to data integration
This first section of the book focuses on the importance of achieving data integra-

tion in an organization’s data management planning and making managing data in

motion much more efficient.

Chapter 1: What is data integration?
This Chapter Presents the Reasons Why Data Integration Should Be an Important

Topic for Managing Data in an Organization and Almost Every Organization

Should Have a Data Integration Layer in Its IT Architecture.

Chapter 2: The importance of data integration
This chapter presents an overview of the processes that collectively can be

referred to as data integration: moving data, transforming data, migrating data

from one application to another, pulling information together, and distributing

processes out to data.

Chapter 3: Types and complexity of data integration
This chapter presents an overview of the types of data integration, each of which

is covered in detail in a separate section of the book: batch data integration, real-

time data integration, and big data integration.

Chapter 4: The process of data integration development
This chapter deals with the standard development life cycle on data integration

projects and the types of resources needed to be successful.

Part 2: Batch data integration
The second section of the book discusses data integration techniques and technol-

ogies associated with very large-volume data movement that have usually been

with batch, or asynchronous data integration, used for activities such as data con-

versions and moving data into data warehouses.

Chapter 5: Introduction to batch data integration
This chapter describes the batch data integration capability.
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Chapter 6: Extract, transformation, and load
This chapter describes the core data integration ETL process flow that is used for

all types of data integration, and most especially for batch data integration.

Chapter 7: Data warehousing
This chapter provides a description of data warehousing and most especially how

data is loaded into and extracted out of a data warehouse. There is also an inter-

view with data warehousing expert Krish Krishnan on data warehousing and data

integration.

Chapter 8: Data conversion
This chapter describes the process of data conversion, also known as data migra-

tion, and how data integration is integral to the data conversion process.

Chapter 9: Data archiving
This chapter focuses on the process of data archiving and the importance of data

integration. It includes an interview with expert James Anderson on data archiv-

ing and data integration.

Chapter 10: Batch data integration architecture and metadata
This chapter outlines the tools necessary to implement a batch data integration

capability for profiling, modeling, storing metadata, performing data movement,

transformation, and scheduling. It includes an interview with metadata expert

Adrienne Tannenbaum on metadata and data integration.

Part 3: Real-time data integration
The third section of the book discusses data integration best practices associated

with real-time or synchronous data integration, used for passing information

between interactive operational applications and systems.

Chapter 11: Introduction to real-time data integration
This chapter describes the real-time data integration capability.

Chapter 12: Data integration patterns
This chapter categorizes and describes the basic patterns used in real-time data

integration, especially the critical “hub-and-spoke” approach to data interfaces.
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Chapter 13: Core real-time data integration technologies
This chapter provides a brief description of the key technologies used in real-time

data integration: ESB, SOA, XML, EAI, and EII. Included is an interview with

XML expert M. David Allen on the importance of XML in real-time data integra-

tion and an interview with data integration expert David Linthicum on enterprise

service buses.

Chapter 14: Data integration modeling
This chapter describes the critical area of data modeling in data integration, espe-

cially real-time data integration. Data-modeling expert Dagna Gaythorpe provides

an interview on some of her experiences with canonical data modeling, integral to

hub-and-spoke interface architecture.

Chapter 15: Master data management
This chapter describes the area of master data management and how data integra-

tion is intertwined and essential to its success.

Chapter 16: Data warehousing with real-time updates
This chapter provides a description of real-time updates in data warehousing.

Data warehousing expert Krish Krishnan continues his interview on data ware-

housing and real-time data integration.

Chapter 17: Real-time data integration architecture and metadata
This chapter outlines the tools necessary to implement a real-time data integration

capability for profiling, modeling, storing metadata, performing data movement,

transformation, and event orchestration.

Part 4: Big data integration
The last section of the book is about data integration associated with emerging

technologies such as cloud computing, visualization, massively parallel proces-

sing, and data virtualization.

Chapter 18: Introduction to big data integration
This chapter provides an introduction to the data integration capability with big

data.
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Chapter 19: Cloud architecture and data integration
This chapter provides a brief description of cloud architecture and the additional

issues and concerns associated with integrating data from within and organization

with data located in a cloud solution.

Chapter 20: Data virtualization
This chapter describes data virtualization, which is the technology central to big

data integration.

Chapter 21: Big data integration
This chapter gives an overview of big data and then outlines the tools necessary

to implement a real-time data integration capability.

Chapter 22: Conclusion to managing data in motion
This chapter concludes the presentation of data integration and summarizes the

technical solutions required for implementing various data integration capabilities:

batch data integration, real-time data integration, and big data integration.
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CHAPTER

1The Importance of Data
Integration

INFORMATION IN THIS CHAPTER
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The natural complexity of data interfaces
The average corporate computing environment is comprised of hundreds or even

thousands of disparate and changing computer systems that have been built, pur-

chased, and acquired. The data from these various systems needs to be integrated

for reporting and analysis, shared for business transaction processing, and con-

verted from one system format to another when old systems are replaced and new

systems are acquired. Effectively managing the data passing between systems is a

major challenge and a concern for every information technology organization.

Most data management focus is around data stored in structures such as data-

bases and files, and a much smaller focus is on the data flowing between and

around the data structures. Yet, management of the data interfaces in organizations

is rapidly becoming a main concern for business and information technology (IT)

management. As more systems are added to an organization’s portfolio, the number

and complexity of the interfaces between the systems grow dramatically, making

management of those interfaces overwhelming.

Traditional interface development quickly leads to a level of complexity that is

unmanageable. The number of interfaces between applications and systems may

become an exponential factor of the number of systems. In practice, not every system

needs to interface with every other, but there may be multiple interfaces between sys-

tems for different types of data or needs. For an organization with 100 applications,

there may be something like 5000 interfaces. A portfolio of 1000 applications may

provide half a million interfaces to manage.

An implementation of some data integration best practice techniques can

make the management of an organization’s interfaces much more reasonable
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than the traditional “point to point” data integration solutions, as depicted in

Figure 1.1, which generate this type of management challenge. An organization

that develops interfaces without an enterprise data integration strategy can quickly

find managing the vast numbers of interfaces that ensue impossible.

The rise of purchased vendor packages
It has been the general consensus for years that, in most cases, except for strategi-

cally differentiating applications, it is more cost effective to purchase packages and

configure appropriately for the organization, thus sharing the cost of developing

functionality, supporting new feature development, and detecting and resolving

problems across the various organizations using the software. Another term for pur-

chased package is COTS (Commercial Off the Shelf) software.

Since the vast majority of software applications being implemented at organiza-

tions now are purchased vendor packages, the work and process of integrating the

specific portfolio of software being run in a particular organization is one of the few

remaining custom development activities. Software vendors can develop systems in

ways to support integration and interactions with the other systems in the portfolio,

but the specific portfolio of systems requiring integration in an organization, and

therefore the data integration solution, are unique to each organization.

Most additions to the application system portfolio are purchased packages, but

packages invariably will contain their own definition of important master data

structures, such as customer, product, and organization hierarchy. Since master

FIGURE 1.1

Point-to-Point Interface Complexity.

4 CHAPTER 1 The Importance of Data Integration



data will invariably exist in any custom applications as well as any other packages

in the portfolio, it will be necessary to integrate the master data across the appli-

cations. Therefore, although the practice of purchasing application solutions rather

than building custom makes the management and ongoing support of an applica-

tion portfolio somewhat easier, it also makes the required integration of data

across the application portfolio more complex than if all applications were custom

developed and utilized common data structures.

Key enablement of big data and virtualization
In the emerging areas of big data, cloud processing, and data virtualization,

critical components of the implementation of these technologies and solutions are

data integration techniques.

With big data, it is frequently a better solution, rather than consolidating data

prior to analysis, to leave the vast amounts and various types of data where they are

and distribute the processing out to the data, that is, a parallel processing solution.

When the results of the requests have acted on the distributed data, the results need

to be consolidated and returned. Data integration is critical to big data solutions, but

the solutions may be significantly different from traditional data integration. As

depicted in Figure 1.2, the arrows indicate the existence of data integration solutions

to transport and consolidate data between the various and sundry data structures.

FIGURE 1.2

Big Data Architecture.
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Cloud architectures with the external and virtual server solutions, data replica-

tion, and need for fault-tolerant solutions rely on data integration solutions. Again,

however, the implementation of data integration solutions in a cloud environment

is very different from those in traditional data centers, but builds on the basic con-

cepts developed over the last two decades in data integration.

Infrastructure and server virtualization is widely implemented in many organiza-

tions because of the flexibility in infrastructure management it allows. These solu-

tions play nicely with some data integration solutions but require adjustments with

others, such as enterprise service bus technology.

In-memory data structures and processing can provide performance improve-

ments of multiple magnitudes and rely on many data integration techniques, but

they need to be implemented in ways that leverage the strengths of in-memory

processing capabilities.

The capabilities of data virtualization represent the culmination of more than

two decades of experience with data integration and many thousands of hours

fine tuning various data integration techniques and technologies. With all its

benefits, data virtualization can be viewed as a breakthrough that stands upon the

experience with the disciplines of data warehousing, business intelligence, and,

most critically, data integration.
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Data in motion
Planning the management of data in data stores is about “persistent” data that sits

still. Managing the data that travels between systems, applications, data stores,

and organizations—the “data in motion”—is central to the effectiveness of any

organization and the primary subject of this book.

It shouldn’t be news that available, trusted data is absolutely critical to the suc-

cess of every organization. The processes of making the data “trusted” is the subject

of data governance and data quality, but making the data “available”—getting the

data to the right place, at the right time, and in the right format—is the subject of

data integration.

The practice associated with managing data that travels between applications,

data stores, systems, and organizations is traditionally called data integration

(DAMA international, 2009). This terminology may be a little misleading to those

who are not used to the term. Data integration intuitively sounds to be more

about the consolidation of data, but it is the movement, not the persistence that is

the focus. Data interface refers to an application written to implement the move-

ment of data between systems.

Integrating into a common format—transforming data
Usually, the most complex and difficult part of integrating data is transforming

data into a common format. Understanding the data to be combined and

7



understanding (and possibly defining) the structure of the combined data requires

both a technical and business understanding of the data and data structures in

order to define how the data needs to be transformed.

In Figure 2.1, multiple sources of data of different formats are transformed

into an integrated target data set. Many data transformations are accomplished

simply by changing the technical format of the data, but frequently, as depicted in

the diagram, additional information needs to be provided to look up how the

source data should be transformed from one set of values to another.

Migrating data from one system to another
When an application in an organization is replaced, either by a new custom appli-

cation or by a purchased package, data from the old system needs to be migrated

to the new application. The new application may already be in production use and

additional data is being added, or the application may not yet be in use and the

data being added will populate empty data structures.

As shown in Figure 2.2, the data conversion process interacts with the source

and target application systems to move and transform from the technical format

needed by the source system to the format and structure needed by the target sys-

tem. This is best practice, especially to allow a data update to be performed by the

FIGURE 2.1

Transforming Data into a Common Format.
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owning application code rather than updating the target data structures directly.

There are times, however, when the data migration process interacts directly with

the source or target data structures instead of the application interfaces.

Moving data around the organization
Most organizations of middle to large size have hundreds or, more probably,

thousands of applications, each with its own various databases and other data

stores. Whether the data stores are from traditional technologies and database

management systems, emerging technologies, or other types of structures such as

documents, messages, or audio files, it is critical to the organization that these

applications can share information between them. Independent, stand-alone appli-

cations that do not share data with the rest of the organization are becoming less

and less useful.

The focus of information technology planning in most organizations tends to

be around the efficient management of data in databases and other data stores.

This may be because ownership of the spaces between the applications running in

an organization may be unclear, and so somewhat ignored. Data integration

FIGURE 2.2

Migrating Data from One Application to Another.
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solutions have tended to be implemented as accompanying persistent data solu-

tions such as data warehouses, master data management, business intelligence

solutions, and metadata repositories.

Although traditional data interfaces were usually built between two systems

“point to point,”with one sending and another receiving data, most data integra-

tion requirements really involve multiple application systems that want to be

informed real time of changes to data from multiple source application systems.

Implementing all data interfaces as point to point solutions quickly becomes

overwhelmingly complex and practically impossible for an organization to man-

age. As depicted in Figure 2.3, specific data management solutions have been

designed to centralize data for particular uses to simplify and standardize data

integration for an organization, such as data warehousing and master data manage-

ment. Real-time data integration strategies and solutions now involve designs of data

FIGURE 2.3

Moving Data into and out of Central Consolidation Points.
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movement that are significantly more efficient than point to point as depicted in

Figure 2.4.

Pulling information from unstructured data
In the past, most data integration projects involved almost exclusively data stored

in databases. Now, it is imperative that organizations integrate their database (or

structured) data with data in documents, e-mail, websites, social media, audio,

and video files. The common term for data outside of databases is unstructured

data. Integration of data of various types and formats usually involves use of

the keys or tags (or metadata) associated with unstructured data that contains

information relating the data to a customer, product, employee, or other piece of

master data. By analyzing unstructured data containing text, it may be possible to

FIGURE 2.4

Moving Data around the Organization.

11Pulling information from unstructured data



associate the unstructured data with a customer or product. Thus, an e-mail may

contain references to customers or products that can be identified from the text

and added as tags to the e-mail. A video may contain images of a customer that

can be matched to the customer image, tagged, and linked to the customer infor-

mation. Metadata and master data are important concepts that are used to inte-

grate structured and unstructured data.

As shown in Figure 2.5, data found outside of databases, such as documents,

e-mail, audio, and video files, can be searched for customers, products, employ-

ees, or other important master data references. Master data references are attached

to the unstructured data as metadata tags that then can be used to integrate the

data with other sources and types.

Moving process to data
In an age of huge expansion in the volume of data available to an organization

(big data), sometimes it is more efficient to distribute processing to the multiple

locations of the data rather than collecting data together (and thus duplicating)

in order to process it. Big data solutions frequently approach data integration

from a significantly different perspective than the traditional data integration

solutions.

FIGURE 2.5

Pulling Information from Unstructured Data.

12 CHAPTER 2 What Is Data Integration?



As shown in Figure 2.6, in some cases of working with very large volumes, it

is more effective to move the process to the data and then consolidate the much

smaller results.

Emerging big data solutions are mostly used by programmers and technologists

or highly skilled specialists such as data scientists.

FIGURE 2.6

Moving Process to Data.
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The differences and similarities in managing data
in motion and persistent data
Data access and security management are primary concerns for both persistent

and moving data. Persistent data security is usually managed in layers: physical,

network, server, application, and at the data store. Data traveling between applica-

tions and organizations needs additional security to protect the data in transit

from unauthorized access. Methods for securing data while in transit, using

encryption at the sending point and decryption at the intended receiving point, are

robust and complex areas of study with interesting histories involving spies and

devices going back to the beginning of recorded history, none of which is a topic

in this book.

Recovery from failures in processing is a critical subject for both persistent

data processing and transient data processing. The techniques for recovery are

very different but with some related approaches for the two methods. Actually,

every technology and tool may have different methods for recovery that will

make them appropriate for various business and technical solutions. The two

things that are important to determine in choosing an appropriate solution are

how much data can be allowed to be lost in a failure and how long the systems

can be down before recovery must occur. The smaller the amount of data it is

acceptable to lose and the smaller the amount of time of acceptable downtime,

the more expensive the appropriate recovery solution. But the subject of business

continuity and recovery from failure is also not a part of this book.
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With persistent data, much of the concern is about the model or structure of

the data being stored. In managing data in motion, the largest concern is how

to associate, map, and transform data between different systems. There is an

important part of the implementation of data integration solutions which does

involve the modeling of the data in transit and the use of a central model of the

data passing between applications; this is called canonical modeling.

Batch data integration
Batch data integration occurs when data to be transferred from a source to a target

is grouped together and sent periodically, such as daily, weekly, or monthly.Most

interfaces between systems in the past used to be in the form of passing a large

file of data from one system to another on a periodic basis. The contents of the

file would be records of consistent layout, and the sending and receiving applica-

tion systems would agree to and understand the format. The passing of data

between two systems whereby a sending system passes data to a target receiving

system is called “point to point”. The data file would be processed by the receiving

system at some point in time, not necessarily instantaneously; thus the interface

would be “asynchronous” because the sending system would not be waiting for an

immediate confirmation before the transaction would be considered complete. The

“batch” approach to data integration is still appropriate and effective for very large

data interactions such as data conversions and loading data snapshots into data

warehouses. This type of interface can be tuned to be extremely fast and is appro-

priate where very large volumes of data need to be loaded as quickly as possible. It

is also described as “tightly coupled” because the format of the data file must be

agreed to between the systems and can only change successfully if the two systems

involved incorporate knowledge of the change simultaneously.

Tight coupling requires carefully managed orchestration of changes to multiple

systems to be implemented at the same time in order for the interfaces not to

“break,” or stop working either correctly or at all. In managing large portfolios of

application systems, it is preferable to have a looser coupling of system interfaces

in order to allow changes to applications that don’t immediately break other systems

and don’t require such careful coordination of simultaneous changes. Therefore,

it is usually preferable that data integration solutions are “loosely coupled.”

Real-time data integration
Interfaces that are necessary across systems immediately in order to complete a

single business transaction are called “real-time” interfaces. Usually they would

involve a much smaller amount of data being passed in the form of a “message.”

Most real-time interfaces are still point to point between a sending and receiving

system and tightly coupled because the sending and receiving systems still have
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specific agreement as to the format, such that any change must be made to the

two systems simultaneously.Real-time interfaces are usually called synchronous

because the transaction will wait for the data interface to complete its processing

in both the sending and receiving systems.

Best practices in real-time data integration solutions break away from the

complexity problems of point-to-point and tightly coupled interface design. There

are logical design solutions that can be implemented in various technologies.

These technologies can be used to implement inefficient data integration as well,

if the underlying design concerns are not understood.

Big data integration
The term “big data” indicates that there are large volumes of data, as well as data

of various technologies and types. Taking into account the extra volumes and var-

ious formats, data integration of big data may involve distributing the processing

of the data to be performed across the source data in parallel and only integrating

the results, because consolidating the data first may take too much time and cost

too much in extra storage space.

Integrating structured and unstructured data involves tying together common

information between them, which is probably represented as master data or keys

in structured data in databases and as metadata tags or embedded content in

unstructured data.

Data virtualization
Data virtualization involves using various data integration techniques to consoli-

date data real-time from various sources and technologies, not just structured

data. “Data warehousing” is a practice in data management whereby data is cop-

ied from various operational systems into a persistent data store in a consistent

format to be used for analysis and reporting. The practice is used to do analysis

across snapshots of historical data, among other things, which is difficult using

active operational data. Even when the data required for analysis is only current

data, the reporting and analysis architecture usually involves some persistent data

store, such as a “data mart” because the real-time integration and harmonizing of

data from various sources has previously been found to be too slow for real-time

consumption. However, new data virtualization technologies make real-time data

integration for analysis feasible, especially when used in conjunction with

data warehousing. Emerging technologies using in-memory data stores and other

virtualization approaches allow for very fast data integration solutions that do not

have to rely on intermediate persistent data stores, such as data warehouses and

data marts.
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The data integration development life cycle
The life cycle for developing a new interface between systems is very similar to

that of other data-related development disciplines. Critical to success is the analysis

of the actual data on both the source and target sides of the proposed data move-

ment. Also, although Figure 4.1 shows that the steps toward implementation and

operation are sequential and distinct, they are actually more iterative and overlap-

ping than depicted, with testing of assumptions and designs being performed as

early as possible using analysis tools and prototypes.

Figure 4.1 depicts the data integration life cycle. The first part of the life cycle

is the scoping of the project: high-level requirements, high-level design, data

requirements, identification of sources and targets. The process starts with high-

level requirements: What is the basic data movement requirement that needs to be

met? It could be that customer data needs to be synchronized across the enterprise,

some data from an external organization needs to be made available, additional

data should be included in reports, social media data should be used for predictive

analytics, or a myriad of other possible data movement requirements. Then, some

basic concept of design is specified: Does this need to happen once a day in batch

or real time? Is there a data integration platform in place ready for use, or is some-

thing additional needed? Another more detailed round of requirements and design

should identify what data is needed and potential sources and targets of the data in

question.

The next part of the data integration life cycle is frequently ignored: profiling.

Because data integration is regarded as a technical discipline and because, right-

fully, organizations are sensitive about giving access to production data, it may be

difficult to analyze the data that currently resides in the data stores of potential
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source and target applications for the data interfaces. The step of profiling the

actual data to be involved in the data integration is critical to successful develop-

ment. Every data integration project discovers something in the actual data of the

potential sources and targets that significantly affects the design of the solution,

whether it is unexpected content, the lack of content, or poor quality data, or even

that the data required doesn’t actually exist where it was expected. Negotiation

with data owners and data security groups should be continued until an

acceptable solution is achieved that allows data profiling on the proposed source

and target data.

All data integration solutions should include some proving process that is

executed periodically while the data interface is in production to ensure that the data

from the source applications have successfully been incorporated into the data struc-

tures of the target applications. Data proving should be done using an alternative

means of extract to the data interface, such as running the same report on the source

and target systems and compare the results. Proving is essential for data conversion

projects but is important for all data integration.

Inclusion of business knowledge and expertise
Data integration has been viewed as a very technical practice within data manage-

ment, wholly the domain of technologists, as opposed to the other extreme of data

governance and data quality, which are almost wholly business process-oriented

practices. However, effective data integration also requires a business understanding

of the data being passed between systems.

FIGURE 4.1

Data Integration Life Cycle.
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Many applications and projects that rely on data integration (conversion, data

warehousing, master data management) are subject to delays in implementation,

not because of a lack of technological solutions but because of a lack of business

knowledge and business involvement.

One of the core processes in data integration development, specifying the data

transformations, must be reviewed and verified by someone with detailed business

understanding of the data. Many tools can be used to try and deduce the relationships

between data in various systems, either through similarities in the field names or an

actual analysis of the data contents. Ultimately, however, these deductions are only

educated guesses that must be verified by the actual business users of the data.

The real challenge is that some of the steps in the data project life cycle as

depicted in Figure 4.1 cannot be easily segregated between steps to assign to a

technical resource versus those to assign to a business resource. The requirements

steps and the specific mappings and transformation rules must be completed by

someone who understands both aspects of the data in question or by people from

multiple groups working closely together. To define the mappings and transforma-

tions, for example, knowledge of both the physical implementation of the data and

how that same data is actually used in business processes is necessary.

A technical resource might know, or can find out, that a particular field on a

screen is mapped to a particular field in a data store that might or might not have

a similar name. A business resource may know which field on the screen they

want to extract for some purpose but may not know where that field is necessarily

stored in the physical data structures. Profiling the candidate source data, once

potential fields have been identified, will almost certainly highlight information

about the actual data of which neither technical nor business resources were aware

but will require both technical and business resources to understand the profile

results. All this information will be necessary in order to specify the correct mapping

and data transformation requirements for the source data.

Both technical and business knowledge of the source and target data are criti-

cal to the success of data integration projects, and this need for multiple resources

from usually different functional areas to coordinate on all steps in the solution

development life cycle is the most challenging aspect of data integration

development.
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What is batch data integration?
Most interfaces between systems traditionally have been in the form of passing a

large file of data from one system to another on a periodic basis, such as daily,

weekly, or monthly. The contents of the file would be records of a consistent

layout, and the format would be agreed to and understood between the sending

and receiving application systems. This process is called batch mode because the

data is “batched” into groups and sent periodically rather than individually in real

time. This standard batch data integration process is depicted in Figure 5.1. The

passing of data between two systems in which a sending system passes data to a

target-receiving system is called point to point.

This “batch” approach to data integration is still appropriate and effective for

very large data interactions such as data conversions and loading periodic snap-

shots into data warehouses. The data loading can be tuned to be extremely fast

and is useful where very large volumes of data need to be loaded as quickly as

possible. It is also described as “tightly coupled” because the systems must agree

on the format of the data file, and the format can only change successfully if the

two systems involved implement knowledge of the change simultaneously.

Replacing either the sending or receiving system usually involves the need to

rewrite the interface for the other system.

Data backup and recovery is not usually addressed under the subject of data

integration, and it won’t be covered in this book. Data backup and recovery is

usually handled by specialized hardware and software utilities that are proprietary

to the data structures in which the data is stored and tend to be highly optimized
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and efficient. The subject is discussed by specific data structure and storage vendors

and under the topic of business continuity.

Batch data integration life cycle
The batch data integration development life cycle is similar to other data-related

projects but have a slightly different recommended life cycle from projects that are

not data centric. Prior to the development of a batch data integration flow, or a

batch data interface, the scope of the interface has to be defined regarding affected

sources and targets with an initial concept of the attributes to be involved.

The scoping exercise involves high-level requirements and design in order to

determine that batch data integration is an appropriate solution. An initial definition

of the data to be involved in the interface is specified, including what attributes are

required to be populated in the target and an educated guess as to what attributes

would need to be extracted from the source or sources in order to determine the

appropriate values of the target.

A highly recommended best practice critical to the success of building a data

interface is to profile the actual data in the source and target data structures.

Profiling actual production data is essential to understanding the way the target

data should look and in which sources the appropriate attributes will be found.

Basic profiling will involve understanding various aspects of what the data in

question actually looks like, not just what has been documented or thought to be

the case, including uniqueness, density (nulls or blanks), format, and valid values.

Specification of the required transformation of data from the source format to

the target requires a combination of business and technical knowledge. People

who are both business and technologically knowledgeable should review and

FIGURE 5.1

Extract, Transformation, and Load Data Flow.
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agree to the specified design of the data transformation based on high-level

requirements and profiling results.

The development of a data interface should include some kind of data-proving

process that runs periodically to check that the data from the source systems is in

agreement with what has been passed to the target systems.

Figure 5.2 portrays a highly delineated series of steps. In practice, it is best to

use an iterative, agile, or prototype approach to developing the data interface

where the data movement is proven without a large amount of time or effort pass-

ing between design and test.

FIGURE 5.2

Batch Data Integration Life Cycle.
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What is ETL?
The core function of data integration is to obtain data from where it currently

resides, changing it to be compatible in format with the desired destination and

putting it into the destination system. These three steps are called extract, transform,

and load (ETL). All data integration, regardless of whether it is performed in batch

or real time, synchronously or asynchronously, physically or virtually, revolves

around these basic actions. Although it is an extremely simple concept, large possi-

ble differences in designs and technology solutions exist for implementation. There

are development and support roles with titles that begin with ETL (and other

related acronyms) for the analysts, modelers, and programmers who develop these

functions.

Many vendor packages exist for performing ETL, some of which are specialized

for particular styles of data integration in varying levels of complexity and prices.

Some of the available packages are extremely complicated, and most require pro-

grammers with specialized training and experience in the particular package or tool

in order to effectively implement solutions.
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Profiling
Profiling data involves reviewing and analyzing the actual data potentially to be

included in an extract to further understand the format and content. Profiling

should be performed when potential data for an extract has been identified

through high-level requirements gathering.

It can sometimes be difficult to arrange for profiling because getting access

authority for the person who is to perform the profiling, or the results analyst, may

involve sensitive or personal information. It is critical to the success of the project

that profiling not be skipped and that acceptable access authority be granted to enable

this step to be performed. Profiling has been found to be absolutely essential to

developing extracts that meet business needs. Profiling is used to confirm that the

format and content of the source data meet the description given from business

users, metadata, and documentation. In cases where one or more of these levels of

documentation do not exist, profiling can be used to develop the necessary metadata

and documentation. In practice, profiling usually identifies substantial differences

from what was expected in the actual source data and can help to prevent unexpected

project delays.

Profiling tools can be used to report the inferred format and content from the

actual source data: percentage of null or blank contents, number of distinct values

and instances with highest occurrences, and format of contents. Some profiling

tools can even find relationships between data across data stores, using the field

names or the actual field contents to infer relationships.

During data profiling, it is often found that the source data may need to be

corrected and cleaned prior to implementation of ETL. In some cases the corrections

can be automated, but it is more frequently the case that the corrections have to be

done manually by a businessperson familiar with the data. A business decision must

be made as to whether the corrections are made in the source data structure or whether

the problems found with the data will be passed on to the target data store.

No one wants to hear about unexpected issues found with the source data. Issues

involving the source data can greatly affect project time estimates and resource

requirements. However, the earlier in the project life cycle that issues are uncovered,

the smaller the impact will be. It is critically important that profiling is performed

early in the project life cycle to minimize the impact to the projects that are planning

to use the data.

Extract
In order to perform the “extract” part of ETL, it is necessary to access the data

in the system or data store in which it currently resides. A basic understanding of

the format and meaning of the data is needed to select what data of interest is to

be copied.
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There are two basic approaches to extracting data: Either the current system,

the source system, makes a copy of the data, or another system, say a specialized

extract system, comes in and grabs the data. The benefit of the source system tak-

ing the extract is that the system currently storing the data (and the current system

support staff) understands the meaning of the data and, of course, the technological

solution in which it is stored. However, multiple potential resource problems arise

when the source system performs the extract. Frequently, the source systems from

which we want to extract data are production operational systems and we don’t

want to negatively impact their production performance by adding more operations

than they were designed to perform. Also, the source system support staff may be

too busy to create an extract, may not be trained in the technology or tools being

used for the extract, or may not consider the extract to be a priority.

Using a specialized extract application to pull data from the system currently

storing the data has the smallest impact on the source system, although there is

probably still some use of the data store engine, such as the database management

system or the file management system, and so there may still be some resource

contention. A specialized extract application would be staffed with personnel

trained in using the specific extract tools and technology.

In practice, however, it frequently works best if the source system support

staff creates the extract. Knowledge of the system and technology in which the

data currently resides, as well as the format and meaning of the source data,

tends to be the biggest stumbling block in trying to centralize extract development.

Most specialized extract applications are efficient at extracting data from relational

databases, either with generic SQL adapters or with specialized adapters for the

particular database management system (DBMS). Many of these tools struggle with

the oddities inherent in mainframe file structures, such as a COBOL REDEFINES

(COmmon Business-Oriented Language structure in which various data attributes

may be present) and other specific data storage technology structures.

Staging
The extract process implies that the result of the extract will be a “file” of data that

will then be copied and transported to another location, usually another server or

platform. Storing the extracted file on the source server platform and storing the

extracted data copied onto the target server platform, as well as any intermediate

points, is called “staging the data”. There is commonly a staging point on the

source system server platform as well the target. Staging the data allows for an

audit trail of what was sent and what was received. It also allows timing the proces-

sing of the data between the source and target systems to be loosely coupled, or

asynchronous: The two systems do not have to be coordinated to process the data

at the same time, but they can do so when it is most appropriate for each sepa-

rately, as long as the extract from the source system occurs first.

31Staging



However, reading and writing from disk, called I/O (for input/output), is sig-

nificantly slower than processing in memory. Bypassing staging points in the

design of an ETL solution may make the process as much as ten times faster, a

significant difference when speed is critical, but would lose the benefits of the

audit trail and loose system coupling.

Access layers
In order to design an extract solution, it is usually necessary to understand the

various security access layers involved in protecting the data to be extracted,

although some or all of the layers may be logically hidden or virtualized, where

managing the access is performed automatically. The access layers involved

include at least the organization network and firewall layers, the server layer (or

physical layer), the operating system layer, the application layer, and the data

structure layer.

Where integration is across organizations, there is a security access layer that

may have to be crossed into an organization’s area of concern. Frequently, this is

logically implemented with firewalls protecting networks. We constantly access

data on the Internet virtually using Internet protocols, where a logical address is

located within a particular organization on a particular server. Most organizations

separate their internal activity from their interactions with external organizations

and systems by implementing separate networks for each separated by firewalls

(logical protection) and very carefully designed limited abilities to move data

between the two. The logical area where interactions are made with external sys-

tems is referred to as the “DMZ” or demilitarized zone—a reference to demarcation

areas between combatant forces during war.

Different systems and data stores are frequently located on different physical

servers, although the separation of servers may not be physical but may be using

logical partitioning and cloud computing technologies. Access to the server (logical

or physical) will have its own security protection. Physical and logical servers will

run operating system software that will also contain access security capabilities.

If an extract process is accessing data using the application code API (applica-

tion programming interface), a best practice, then the extract process may have to

pass through the application security access layer. Ultimately, the data structure

storing the data to be extracted, whether it is a database management system or a

file storage system, will also have a security access layer.

Some of these access layers will be irrelevant, if an extract process is running in

the same organization’s network as the source and target, or if the extract process

bypasses the application layer to access the data structure directly. Most of the access

will be through logical layers that manage the complexity automatically with regis-

tries, such as a private cloud or database management system, where the physical

server location of the data is virtualized by the access layer and need not be known
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by the extract process. However, in designing an extract process, it will be necessary

to know how all the security access layers are or are not being implemented.

Data security is also frequently implemented using data masking, which limits

or encrypts data of particular sensitivity or confidentiality while allowing access

to the rest of the data in the data structure. This method is useful for allowing

technologists, programmers, or consultants to analyze data in a data structure

while limiting access to particularly sensitive information. Data masking may be

implemented by transforming the data in question or by limiting access through

the query.

Transform
The process of transforming data to be compatible with the target data structure

may vary from being extremely simple to being impossible, or may require the

collection of additional information. The transformation process requires detailed

business requirements that the business owners of the data in question have either

developed or approved, whereas the extract and load processes may be almost

wholly technical processes requiring very little business review except to ensure

that the correct data is being extracted.

Simple mapping
The simplest type of transformation is that in which an individual text or numeric

field is defined and formatted consistently in both the source and target and simply

has to be “mapped” between the two: It is specified that the particular source field

should be copied to the particular target field. It might be almost as simple to make

a slight adjustment in format, either because of differing technical implementations

in the source and target or slight definition differences such as the target being

somewhat larger than the source field.

Lookups
A field in a data source may contain only one of a set of possible values that must

be transformed to one of a different set in the target. The requirements will have to

specify the mappings from source values to target values. If the source field is text

and the target field is a set of possible values, then the transformation may have to

be performed through a combination of string manipulation and manual data

standardization.

Aggregation and normalization
Frequently, the transformation of data is much more complex than these simple

cases suggest. Determining the value in the target data structure may require
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retrieving multiple pieces of data from the source that may be in various structures.

One record or row of data in the source may map to multiple records in the target,

or vice versa.

Where there are multiple sources of the same data there may have to be rules

specified that indicate how to determine if two pieces of source data represent the

same entity in the target and how to determine which source should be used if the

information is different in the multiple sources. This type of processing is called

“matching” and is a sophisticated area used especially in master data management

(MDM).

Calculation
The values to be stored in the target data structures may have to be derived from

other data using some type of formula based on business rules or data quality

rules in cases where the source is missing or lacking.

Ultimately, the data in the source data structure may be insufficient to provide

the data required in the target data structure. The business requirements in this

case may specify defaulting the target values, or a separate effort may be required

to collect the required data through another internal or external source or manual

operation.

It is important that profiling of the source and, if possible, the target data has

occurred prior to finalizing the transformation requirements, since it is normal to

find formats and contents during profiling that were not expected or previously

documented. As with profiling, no one wants to hear about problems specifying

data transformation, and it is critical that transformation business requirements

are created early in any project so that additional required data collection can be

planned and performed in a timely fashion. Business requirements for transforma-

tion must be reviewed and approved by businesspeople familiar with the data in

question, as technical analysts and programmers may miss business implications

and should not have final responsibility for these decisions.

Load
The “load” part of ETL has to do with getting the data into the target data structure.

There is some discussion of whether the most efficient order of processing is extract,

transform, load or rather extract, load, transform, the difference having to do with

whether the transformation step should occur on the source server or the target server

(or a separate server). This discussion is very relevant with regard to high-volume

processing and to which engine will be able to do so fastest. Whether there are

staging points for the extracted data at one or more points in the process will greatly

affect the speed of processing as well. Ultimately, the last step in the ETL is getting

the data into the target data structure, either physical or virtual.
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The two main approaches to loading data into the target data store are either to

write code to insert the data directly or to utilize the application code that already

exists for inserting data into the target data store. Whenever possible, it is greatly

preferable to use the existing application code, since built into this code is an

understanding of how the data is supposed to be structured in the target data store.

It is possible that the current application code is not written for high- volume loads

and cannot be used in the load window available. Still, tuning the load process to

enable use of the current application code is preferable to writing independent code

to use for data load.

When the target data store is part of a purchased package, there are two addi-

tional reasons for using the application code to load data. Many purchased packages

specify that all data must be loaded through their code because the data structures

by themselves do not sufficiently describe the format of the data expected by the

application. Package vendors usually provide an API code that is recommended to

be used to insert data into the target data store. Custom or legacy applications may

not have formal API code available for use, but it is best to try to reuse the code

that normally inserts the data into the data stores in order to load the data. This

code may not be accessible. or it may be insufficient for reasons such as defaulting

dates to current date.

Regardless of which method of loading data is used, data validation rules built

into the target data structures should not be disabled during the load process unless

it is absolutely certain that all validation checks are being done prior to the data

load process. Frequently, technicians will suggest that the loads can be done more

swiftly with the data rules turned off, but there was a reason these were defined in

the first place, and data that does not follow those encoded data business rules are

not meant to be in the target data structure. A process must be in place for reporting

and resolving errors with the data to be loaded.

35Load



This page intentionally left blank



CHAPTER

7Data Warehousing

INFORMATION IN THIS CHAPTER

What is data warehousing?........................................................................................ 37

Layers in an enterprise data warehouse architecture .................................................. 38

Operational application layer .........................................................................38

External data ...............................................................................................38

Data staging areas coming into a data warehouse ............................................39

Data warehouse data structure.......................................................................40

Staging from data warehouse to data mart or business intelligence ...................40

Business Intelligence Layer ...........................................................................40

Types of data to load in a data warehouse.................................................................. 41

Master data in a data warehouse....................................................................41

Balance and snapshot data in a data warehouse..............................................42

Transactional data in a data warehouse...........................................................43

Events .........................................................................................................43

Reconciliation..............................................................................................43

Interview with an expert: Krish Krishnan on data warehousing and data integration ...... 44

What is data warehousing?
Data warehouses are data constructs (and associated applications) used as central

repositories of data to provide consistent sources for analysis and reporting.

Enterprise data warehouses (EDWs) are created for the entire organization to be

able to analyze information from across the entire organization. Frequently, very

large organizations will have multiple enterprise data warehouses, each having

data either from large parts of the organization, such as regions, or from large

functional areas. Batch data integration solutions are generally used for putting

data into and taking data out of a data warehouse. Data warehousing architectures

are designed to have consistent data available for the entire organization to use

for analysis, to format data particularly for analysis and reporting purposes, to
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take the stress of analytical reporting needs off the operational systems, and to

allow for historical snapshots data.1

Data integration techniques are so critical to the functioning data warehouse

that some experts in data warehousing consider data integration to be a subset of

data warehousing architecture techniques. However, data integration is critical to

other data management areas as well and is an independent area of data manage-

ment practice.

Layers in an enterprise data warehouse architecture
Data coming into the data warehouse and leaving the data warehouse use extract,

transform, and load (ETL) to pass through logical structural layers of the architec-

ture that are connected using data integration technologies, as depicted in

Figure 7.1, where the data passes from left to right, from source systems to the

data warehouse and then to the business intelligence layer. In many organizations,

the enterprise data warehouse is the primary user of data integration and may

have sophisticated vendor data integration tools specifically to support the data

warehousing requirements. Data integration provides the flow of data between the

various layers of the data warehouse architecture, entering and leaving.

Operational application layer
The operational application layer consists of the various sources of data to be fed

into the data warehouse from the applications that perform the primary operational

functions of the organization. This layer is where the portfolio of core application

systems for the organization resides. Not all reporting is necessarily transferred to

the data warehouse. Operational reporting concerning the processing within a

particular application may remain within the application because the concerns are

specific to the particular functionality and needs associated with the users of the

application.

External data
Some data for the data warehouse may be coming from outside the organiza-

tion. Data may be supplied for the warehouse, with further detail sourced from

the organization’s customers, suppliers, or other partners. Standard codes, valid

values, and other reference data may be provided from government sources,

industry organizations, or business exchanges. Additionally, many data ware-

houses enhance the data available in the organization with purchased data

concerning consumers or customers.

1Inmon, W. H. Building the Data Warehouse (Hoboken, NJ: John Wiley & Sons, 1992).
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External data must pass through additional security access layers for the network

and organization, protecting the organization from harmful data and attacks.

External data should be viewed as less likely to conform to the expected

structure of its contents, since communication and agreement between separate

organizations is usually somewhat harder than communications within the same

organization. Profiling and quality monitoring of data acquired from external

sources is very important, even more critical, possibly, than for monitoring data

from internal sources. Integration with external data should be kept loosely

coupled with the expectation of potential changes in format and content.

Data staging areas coming into a data warehouse
Data coming into a data warehouse is usually staged, or stored in the original

source format, in order to allow a loose coupling of the timing between the source

and the data warehouse in terms of when the data is sent from the source and

when it is loaded into the warehouse. The data staging area also allows for an

audit trail of what data was sent, which can be used to analyze problems with

data found in the warehouse or in reports.

There is usually a staging area located with each of the data sources, as well

as a staging area for all data coming in to the warehouse.
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Some data warehouse architectures include an operational data store (ODS) for

having data available real time or near real time for analysis and reporting. Real-

time data integration techniques will be described in later sections of this book.

Data warehouse data structure
The data in the data warehouse is usually formatted into a consistent logical struc-

ture for the enterprise, no longer dependent on the structure of the various sources

of data. The structure of data in the data warehouse may be optimized for quick

loading of high volumes of data from the various sources. If some analysis is

performed directly on data in the warehouse, it may also be structured for effi-

cient high-volume access, but usually that is done in separate data marts and

specialized analytical structures in the business intelligence layer.

Metadata concerning data in the data warehouse is very important for its effec-

tive use and is an important part of the data warehouse architecture: a clear under-

standing of the meaning of the data (business metadata), where it came from or its

lineage (technical metadata), and when things happened (operational metadata).

The metadata associated with the data in the warehouse should accompany the data

that is provided to the business intelligence layer for analysis.

Staging from data warehouse to data mart or business intelligence
There may be separate staging areas for data coming out of the data warehouse and

into the business intelligence structures in order to provide loose coupling and audit

trails, as described earlier for data coming into the data warehouse. However, since

writing data to disk and reading from disk (I/O operations) are very slow compared

with processing, it may be deemed more efficient to tightly couple the data ware-

house and business intelligence structures and skip much of the overhead of staging

data coming out of the data warehouse as well as going into the business intelli-

gence structures. An audit trail between the data warehouse and data marts may be

a low priority, as it is less important than when the data was last acquired or

updated in the data warehouse and in the source application systems. Speed in mak-

ing the data available for analysis is a larger concern.

Business Intelligence Layer
The business intelligence layer focuses on storing data efficiently for access and

analysis.

Data marts are data structures created for providing to a particular part of an

organization data relevant to their analytical needs, structured for fast access.

Data marts may also be for enterprise-wide use but using specialized structures or

technologies.

Extract files from the data warehouse are requested for local user use, for

analysis, and for preparation of reports and presentations. Extract files should not
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usually be manually loaded into analytical and reporting systems. Besides the

inefficiency of manually transporting data between systems, the data may be

changed in the process between the data warehouse and the target system, losing

the chain of custody information that would concern an auditor. A more effective

and trusted audit trail is created by automatically feeding data between systems.

Extract files are sometimes also needed to be passed to external organizations

and entities. As with all data passing out from the data warehouse, metadata fully

describing the data should accompany extract files leaving the organization.

Data from the data warehouse may also be fed into highly specialized report-

ing systems, such as for customer statement or regulatory reporting, which may

have their own data structures or may read data directly from the data warehouse.

Data in the business intelligence layer may be accessed using internal or exter-

nal web solutions, specialized reporting and analytical tools, or generic desktop

tools. Appropriate access authority and audit trails should be stored tracking all

data accesses into the data warehouse or business intelligence layers.

Types of data to load in a data warehouse
The various types of data to be loaded into the data warehouse are treated differ-

ently and have different life cycles. Some data is kept synchronized with data in

the transaction system and only changes are tracked and passed into the data

warehouse, while for other types of data a “snapshot” is taken at regular periods

of the full set of data regardless of whether there has been any changes and the

data is fully replicated each time data is loaded into the data warehouse.

Master data in a data warehouse
Master data is the data about the important items in an organization by which one

would want to sort information such as customers, products, suppliers, and

employees. Reference data is the set of valid values associated with certain fields

and may overlap somewhat with master data in that one may want to view data

sorted by reference data and it may be dynamic and have to be updated fre-

quently: geographic areas, organizational hierarchies, industry codes. Both master

data and reference data may include hierarchical information or associations

between items such as companies being owned by other companies or states

located within countries. The full expression of hierarchical information with

explicit data instances, such as the specific zip codes within each state and the

states in a country, is known as a taxonomy.

In data warehousing, master data and reference data are extremely important

because these are the items by which people want to sort and display information

and around which data is being consolidated for the enterprise (or the scope of

the data warehouse). When structuring the data in the data warehouse and in the

business intelligence layer, the items by which the data is usually sorted are called
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the dimensions. Therefore, in data warehousing and business intelligence the

terms master data and dimensions are frequently used as synonyms.

Usually, the primary sources of the master data and reference data are outside

the data warehouse and any changes, additions, or deletions to the master data are

fed into the data warehouse before associated transactions are loaded. Changes to

master data and reference data may be fed to the data warehouse as soon they

occur in the source system or on a periodic basis such as daily, weekly, or

monthly, as long as it is the same or more frequently than the transaction data

associated.

In the data warehouse, changes to master data and reference data will be

stored with associated effective start and end dates indicating when the changes

are valid. Usually data in the data warehouse is structured to enable fast high-

volume loading rather than fast high-volume retrieval. If structuring the data for

query, however, the master data changes may be structured in three alternate

ways: as if the master data was always in its current effective state; as if the

changes to the master data created a new piece of master data; or the change to

the master data with its start and end effective dates associated. An example is if

a customer reaches an elite classification level. Should queries on that customer

show all their history in the elite classification or only the transactions following

the point at which the customer became elite? The data can be structured for

query either way or is able to do both, but it can be confusing to leave the deci-

sion open to the query; different analysis may report different results, depending

on slight differences in making the query.

In the staging area coming into the data warehouse, it is usually necessary

to have a cross-reference table (or tables) to translate the identifiers and codes

assigned to the master data and reference data in the various operational applica-

tions to those used in the data warehouse. These cross references themselves may

have updates that are automatically fed from a source, possibly the master data

applications, or updates may be a manual data warehouse system support activity

that must be coordinated with any changes to codes used in the source applications.

Master or reference data that is used as a primary item for sorting and search-

ing in the data warehouse or in data marts is called a “dimension”.2 Depending

on the velocity of change of a particular set of master data or reference data, it

may be described as a slowly changing or rapidly changing dimension. Rapidly

changing dimensions may have to be specially tuned to handle particularly high

volumes or high rates of change.

Balance and snapshot data in a data warehouse
Usually, the information on any kind of balance information from source applica-

tions, such as an inventory balance or currency balance, is copied as a point-in-

time snapshot on a periodic basis, such as daily, weekly, or monthly, but might

2Kimball, R. The Data Warehouse Toolkit (New York, John Wiley & Sons, 2002).
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be smaller increments such as hourly. So, a copy of the entire set of balances is

sent from the operational applications to the data warehouse. Any master data

associated with the balances is transformed using the cross-reference tables in

staging, and the balances are stored in the data warehouse with the appropriate

point-in-time interval, the date, or the time the balance was copied.

With multiple snapshots of a balance, historical analysis on the data can be

made across the balances associated with a particular piece of master data (or

dimension).

Transactional data in a data warehouse
There are two types of transactions: business transactions that have a life cycle

with multiple events and statuses, and accounting transactions that post as credits

and debits and offsets but are never changed. Each transaction is usually associ-

ated with each of the dimensions in the data warehouse such as customer, prod-

uct, geography, organizational structure, or standard industry codes.

Accounting types of transactions are only added to the data warehouse, never

changed. New accounting transactions since the last time an extract was taken

from the operational applications are copied and passed to the data warehouse, or

when a new accounting transaction is added to the operational application a copy

is passed to the data warehouse.

Business transactions can be managed in multiple ways with a data warehouse.

Either periodic snapshots are taken of the business transactions or updates to the

business transactions are passed to the data warehouse. Usually within the data

warehouse only one copy of the business transaction is kept with the history of

when events surrounding the transaction occurred and when the status of the

transaction changed. Keeping multiple snapshots of a business transaction in the

data warehouse is rare, as analysis is usually on the events that caused changes or

across transactions rather than on the state of a particular transaction over time.

Business transactions, depending on the type of business, may each have very

long life cycles. Sometimes business transactions themselves are treated as master

data or dimensions, such as a contract or account.

Events
Events are things that occur at a point in time. They may be business transactions

or be associated with business transactions. They are usually associated with the

dimensions in the data warehouse. Events are like accounting transactions in their

behavior: They are added to the data warehouse but usually are not updated.

Reconciliation
Periodic checks should be made that the data sent from the operational applica-

tion systems and other sources into the data warehouse were received and saved
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correctly. Comparison of number of items sent and received as well as a compari-

son of financial totals should be made for each source and type of data. Within

the data warehouse periodic checks should be made that events and transactions

add up to balance changes.

A SIDEBAR FROM THE AUTHOR . . . ON DATA WAREHOUSING AND
PROFILING
In my own experience, profiling is critical to data warehousing projects, as well as to every
data-oriented project. Most data warehouse projects that I have worked on or observed have
had an unexpected period just prior to going live where parts of the data structures have to
be redesigned and other significant changes made because the data in the data warehouse
does not match what was expected, because the data in the source systems was different
than assumed, described, or documented in existing metadata.

In one data warehouse project where I was acting as the data modeler and managing
the DBAs (database administrators), a senior business analyst approached me with some
independent (and unscheduled) analysis he had performed: The data coming from the
accounting system looked entirely different from what we had been expecting in both
content of each individual record and the number of records. We were unprepared for the
large volume of records being generated from the accounting system, where we were
interested in only a small number of the types of records. Also, the content of individual
records was extremely different than expected, and multiple records from the accounting
system would be needed to acquire the full set of information we were expecting from
each record. This discovery required me to redesign a section of the data warehouse
logical model and add a new processing section to the data warehouse functionality to
compute the information we were expecting from groups of accounting transactions.
Luckily, we made this discovery early in the code development stage of the project, and
so we were able to make the corrections to the model and requirements and add the
extra coding requirements without affecting the overall project.

From this and other similar experiences, I learned that data profiling of production data
is a required analysis activity that cannot be skipped from the life cycle of any data-oriented
project and should be performed before requirements are completed. Tension frequently
exists between the need to perform profiling as part of analysis and the need to keep
production data private, but in choosing battles to fight in a data warehouse project, this is
not the battle to skip and usually an acceptable compromise can be reached or months
should be added to the implementation schedule for redesign needed prior to system
implementation.

INTERVIEW WITH AN EXPERT: KRISH KRISHNAN ON DATA
WAREHOUSING AND DATA INTEGRATION
Following is an interview with Krish Krishnan on the importance and use of data integration
in data warehousing.

Krish Krishnan has spent 12 years designing, architecting and developing data
warehouse solutions, in the last five years focusing on unstructured data integration into the
data warehouse. He has been involved in some of the largest and most complex designs and
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architecture of next-generation data warehouses. He is co-author of “Building the
Unstructured Data Warehouse” with Bill Inmon.

How is data integration (i.e., moving and transforming data) related to data
warehousing?
The underlying goal of data warehousing is to create an enterprise platform for providing a
unified view of data in a single, integrated environment. The data in this environment is
cleansed, transformed, and ready for consumption by the downstream applications. Data
integration is the layer of processing data that manages all these activities, including
movement, quality management, and transformation of data.

The most complex activity in data integration is the transformation from one format to
another, which includes cleaning, standardization, enrichment, and metadata processing.

The absence of a data integration layer for the data warehouse would certainly lead to
colossal failures as data within the data warehouse would be loosely integrated, repetitive,
and possibly processed multiple times for each business rule. The end state of such a
chaotic architecture is the failure of the data warehouse. Hence, data integration is an
integral part of the data warehouse for both structured and unstructured data.

How and why is data moved for data warehousing?
Data is the heartbeat of a data warehouse. In order for information to be current in a data
warehouse, there is a continuum of data movement from different types of source
applications to the data warehouse. In a traditional setup, the processing of data is divided
into collection, transportation, cleansing, enrichment, and integration. There are multiple
techniques to move and process data including

• ETL—The most common approach is extract, transform, and load,” known as ETL. Source
data is collected from different data generators and processed to an intermediate layer
called the staging area (optionally to an operational data store on some designs). The data
is cleansed and enriched in the staging environment, which is the first transformation
exercise, and further processed into the data warehouse, where the business rules and
data integration rules are applied as the larger transformation.

• ELT—Another popular approach is called extract, load, and transform (ELT). In this
approach, the data is extracted from the source applications and databases, loaded into
the staging area with data enrichment and cleansing rules applied, and further processed
into the data warehouse for pure integration-related transformation. This approach is
preferred in situations where data is agile and very structured in nature, and requires
minimal integration.

• CDC—A third technique is called change data capture (CDC), where a third-party
application is installed on the source systems to collect changes occurring to the data.
This method normally retrieves changes from the database log, an efficient approach that
doesn’t impact the source database. The changes are then extracted from the source and
moved to the data warehouse. On the target side, the same third-party application is
installed to process the data collected from every extract and load it into the data
warehouse staging area. The data is then cleansed, enriched, and transformed to its final
destination within the data warehouse. CDC is very useful for processing data in a near
real-time situation where the data availability is very critical. In certain architectures, the
CDC data is directly loaded into the ODS for operational purposes and then loaded to the
data warehouse staging layers.

There are many custom derivations of the three techniques, and often a hybrid approach
is adopted to satisfy the multiple competing requirements from the data warehouse for
current data.
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What kinds of transformations are done to the data being moved to the data
warehousing? (e.g., different data structures, conforming data structures,
dimensional models)
Several data transformations can be done with data processing to a data warehouse. The
baseline transformation is to extract data from the source systems and move it into an
integrated model in the data warehouse, which means a transformation from a highly
normalized structure to a transformed and denormalized or dimensional structure. The
transformations include the following.

• Data denormalization—transform highly normalized structures to a denormalized data
warehouse format. Popular with the top-down or Inmon approach to building a data
warehouse.

• Dimensionalization—transform high normalized structure into dimensions and facts; a
bottom-up approach or Kimball star schema model of a data warehouse.

• Metadata processing—integrate a business vocabulary with the data as it is processed in
the data warehouse. Enables harmonization of different nomenclatures into one single
definition.

• Master Data processing—transform key structures of data to conform to a master data
set, creating a highly integrated layer of data.

• Generating surrogate keys—using a common technique for dimensional data
transformation to preserve history, create surrogate keys in the data warehouse.

• Coding data—create lookup tables and lists for compressing duplicate data
• Pivoting data—employ multidimensional data transformation for loading data
• Splitting data—change multivalued columns to single columns
• Merging data—integrate data into single tables or data structures
• Lookup data—create and enrich lookup data. Lookup data is a reference library where the
identity value for the data is substituted in the place of the actual data.

Apart from the data transformations mentioned in this section, there are data model and
data architecture-driven transformations through which the data undergoes several layers of
transformations. Then the aggregate and hierarchy drill down transformations and semantic
layer transformations form the next set of transformations for data to be consumed by the
business users.

An often-overlooked transformation is the physical database-driven transformation where
tables are split vertically, partitioned into discrete structures, indexed, and sorted for better
optimization at storage.

These multiple transformations are the major operations in moving data to the data
warehouse.

Are there different data Integration considerations for putting data into a data
warehouse different than from taking data out of a data warehouse?
Absolutely, yes, the data integration considerations for moving data into the data warehouse
are to integrate the data for consumption by the business and other users. The inbound
transformations will be to migrate the data from OLTP-like structures to a data warehouse
model, which is mostly dimensional in nature or, at least, is more denormalized than the
on-line transaction processing (OLTP) structures.

On the other hand, extracting data from the data warehouse for downstream applications
will be to satisfy specific reporting or analytical requirements. The data extracted for these
purposes will be different in layout and structure. Typically, the data extracted for these
purposes will include the transformed data structure and all the reference data, copies of
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master data, metadata, and any special data such as geospatial. In the extraction process of
the data from the data warehouse, the data is extracted to maintain the referential integrity
as it was loaded to the data warehouse; this is different from the referential integrity model
of the base OLTP applications.

How is data warehousing for structured data different from data warehousing for
unstructured data? Is the data integration different?
Data warehousing for structured data has a defined cycle. We start with requirements, then
move to data modeling. Once we create the data model, we acquire and transform data to
be stored into this data model for integration and downstream processing. This is a very
read-efficient operation inasmuch as we can define the final state structure and once data
is loaded, the reads from the structures are very efficient.

Data warehousing for unstructured data is very volatile in nature. We cannot anticipate
the type of data, its format, structure, and quality of information until the data is acquired.
The data model for this data is created after processing the data. This type of data
processing is called “schema-less.” The data is ingested as files and processed as files.

In processing unstructured data, all the acquisition and processing of data is done prior
to finding the data elements that can be used for integration with the data warehouse. In
this approach there is no data integration, in a traditional sense, yet there is data
integration from an analytics perspective.

Have you seen any data warehousing projects where data integration issues led to
significant problems?
Yes, in my experience as an architect and an expert consultant, I have personally seen
programs fail when clients have not understood the need to build a robust data integration
architecture. In many situations where architects and managers of data warehouses have
called for an independent expert opinion on the reasons for failure, evaluations of the
underlying problems have pointed to poor data integration architecture.

The most common impact that I have seen from poor data integration in a data
warehouse include

• Data quality problems
• Multiple values for a single column
• Date and time format problems
• Character sets and language translation
• Unicode support issues
• Currency formats

Poor data integration architecture has brought some of the best designed data
warehouses to its knees and caused deployment failure and cost overruns.

Have you had experiences where particular attention was paid to data integration in
data warehousing?
Yes. There are some brilliant data integration architectures that have created a success story
for these data warehouses. The processing complexity of these warehouses is of the highest
order: They run in a 24 3 7 service mode and have very stringent performance
requirements. With such tight deadlines, the only failproof method to process data is by
designing a scalable and flexible data integration architecture.

The impressive aspect of this architecture is its ability to process multinational and
multilingual data sets into a global data warehouse, with data enrichment, transformation,
transportation, and integration all rolled into the processing architecture. Some of these

47Types of data to load in a data warehouse



clients have been awarded best practices awards for their adherence to a very efficient data
integration design.

Have you had experiences where data integration was neglected on a data
warehousing project?
In most of the projects that I have worked on as an architect or a consultant, the emphasis
has been on the aspect of data integration. In some situations the client decided against
implementing a full data integration architecture, and the team had to face several hurdles
to implement the data warehouse. As end results of these situations,the cycle time to
implement was twice or three times the original duration and the cost was three times the
original cost for development.

Do you think there should be a separate staging area for loading data into a data
warehouse? Why or why not?
I definitely support the need for a staging area for the data warehouse. The primary reason
for this architectural decision arises from the fact that we need to acquire and preprocess
data and perform data-cleansing activities before loading the data to the data warehouse.
Whether you decide to have an active or real-time data warehouse or the traditional Kimball
architecture of conformed dimensions, without a separate area for the complex data
integration activities the real scalability and flexibility of the data warehouse cannot be
complete. In most of the programs in which I have participated, I have always built and
deployed a staging area.

Are there special considerations relating to the movement of metadata in a data
warehouse, i.e., how is the business, operational, and technical metadata of data in
the data warehouse passed to the business intelligence layer or accessed from the
business intelligence layer?
Metadata has been the most ignored aspect of 90 percent of the world’s data warehouses.
In many cases, there are multiple teams from business analysis to design, development,
and deployment of the data warehouse, and each one often blames the other for not
maintaining metadata.

In my opinion, metadata of different types needs to be developed in the data warehouse.
The business metadata is defined during the requirements phase, and this metadata is
implemented in the semantic layers and database views. Technical metadata is
implemented in the data processing, data model, and physical database design and
business intelligence layers. For the business intelligence layer, most of the software
packages today provide a metadata integration layer.

Metadata has to be migrated across the layers of the data warehouse along with the data
itself. Without this architectural implementation, the data warehouse will fail. In fact, to
implement an integration of unstructured data, the metadata layer is the key.

Web 2.0-based data architectures rely heavily on metadata layers for data integration
and processing across multiple databases.

Do you think people neglect data integration in data warehousing? If so, why?
In many cases data warehouse architects, designers, and managers consider the data
integration architecture and implementation to be expensive, and so they usually cut
corners in this development activity, only to end up spending two or more times the amount
to complete the development of the data warehouse. Also, people often assume that data
processing software will automatically address data integration and overlook the planning
for this important activity.

What kinds of tools or technologies are used to support data integration for data
warehousing?
In a typical structured data processing architecture, ETL, ELT, CDC, service oriented
architecture (SOA), and Custom-coded software packages are implemented for data

48 CHAPTER 7 Data Warehousing



movement; data quality tools are implemented for data cleansing; master data management
tools are implemented for reference data processing; and metadata reference libraries are
implemented for managing metadata.

Are the tools for data integration for data warehousing different for structured and
unstructured data?
Yes, for unstructured data integration the tools used include Hadoop, NoSQL databases,
and textual ETL engines. Some traditional data integration vendors have announced support
for unstructured data integration, but these are still in primitive stages of evolution. The
special technologies can process unstructured data of multiple formats in large volumes.

How do you think the area of data warehousing is changing? In what direction do you
think this area is headed?
Data warehousing as a concept is here to stay for a longer period of time. However, the rapid
change occurring in the space is the integration of unstructured data into the data
warehouse and the momentum to incorporate Hadoop as the corporate data repository while
retaining the enterprise data warehouse to process complex analytics. The future of data
warehouse is going to evolve as a semantic interface-driven data repository based on the
relational databases and unstructured technology architectures that will provide answers to
all sorts of queries from enterprise users.

Do you think the technologies for performing data warehousing, especially around
data integration, are changing?
Definitely, yes, the data integration technologies are changing to support unstructured data
integration. This requires a significant engineering effort from the provider community.
Another popular technique is to use data visualization tools to create a data discovery
environment for pre-processing and analysis of unstructured data.
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What is data conversion?
When implementing a new application system or changing operations from one

application system to another, it is necessary to populate the data structures of the

new application system. Sometimes the data structures of the new application

system are empty, and other times, when consolidating applications, there is

already data in the new data structure and it is necessary to add to it. All the same

techniques and strategies are necessary as described in the section on extract, trans-

form, and load, as well as much from the section on Data Warehousing.

Data conversion life cycle
The basic systems development life cycle for a data conversion project is the

same as for any application development endeavor, with activity centered around

planning, analysis, requirements, development, testing, and implementation. A

pure “waterfall” methodology is not implied or necessary. Like other data-related
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projects, the activities in the analysis phase should include profiling the data in

the source and target data structures. The requirements phase should include veri-

fying that the assumptions made are true by trying the load of very small amounts

of data. Unlike application development projects, there is no support phase in the

data conversion life cycle, unless additional data sources are to be loaded to the

target application later, such as when multiple systems are being consolidated

over time, data is being moved from one system to another in phases, or an orga-

nizational merger or acquisition takes place.

Data conversion analysis
Analysis and planning for data conversion should be started as early as possible,

as soon as analysis and planning for using the new application are completed.

Too frequently, data conversion is thought of as a quick, last-minute activity, and

this view may then cause delay to the entire application implementation and pro-

blems with the converted data. In some cases, this may necessitate falling back to

the original application and create serious customer service issues. In truth, a new

application implementation should begin with data conversion planning. If the

data conversion activities can get started early enough, then the data conversion

development process can provide the data for all stages of testing, not just the

final phase of user testing, which must include converted data.

An assessment should include identifying which data areas need to be con-

verted. This basic decision should be performed and approved by business and

technology subject matter experts from both the source and target systems before

a detailed estimate of the data conversion effort can be performed. This would

include a list of significant reference data, a specific list of master data, as well as

transactions, events, and balance data areas. Then some profiling of the source

data should be performed to determine the volume and quality of the source data.

Sometimes this initial assessment of the source data shows that the data may be

of insufficient quality in some way for the target application system. It therefore

becomes necessary to add another track to clean or enhance the source data prior

to conversion. Of course it is much better to make this determination as early in

the data conversion project as possible.

Best practice data loading
Whenever available, data conversion should use the target application API to load

data into the target data structures. This is best practice for data conversion and

for any data loading that doesn’t use the application data entry front end. Many

vendor package applications insist that all data loading should be through the pro-

vided API. Should an API be unavailable or insufficient for data conversion

needs, an assessment should be made as to whether it is more cost effective and
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less risky for some of the data, say the master data and reference data, be added

to the application manually. It should be kept in mind that data conversion is not

performed just once but needs to be repeated many, many times throughout the

testing process. Thus, data that is manually added needs to be backed up and

restored at the beginning of each data conversion and application test cycle.

If a sufficient application API is not available, then it may be necessary to

load data directly into the data structure of the new application, the target data

structure.

Improving source data quality
Issues associated with data quality tend to become highlighted when using the

data for something different than its original or previous use. Therefore, when

loading data into a data warehouse for the first time or converting to a new appli-

cation data structure, problems with the data may be uncovered.

During the analysis phase of a data conversion project, it is best practice to

profile the data in the source data structures and assess whether the quality of the

data is sufficient for use in the new application. This is not a search for perfection

in the data quality but only seeks to identify whether a special project needs to be

performed to improve the data prior to production conversion. Issues with the

data may include data that does not meet the business rules requirements of the

target application or data that is missing required information. The source system

may not have a place to store data required for the target application, or the field

in the source system is not currently or fully populated. Most frequently, the data

requiring cleansing or enhancing is master data.

It may sometimes be possible to perform enhancement or data improvement

projects automatically through custom code or by acquiring the missing data and

enhancing the source data automatically. Usually, the data is improved manually

by the source operations business team or by temporary business staff who

research and enhance the source data to bring it up to the standard required for

conversion to the target application.

Mapping to target
Whether loading data using an API or directly into the application data structure,

an important recommendation is to focus on the target data layout and then deter-

mine where that data may be obtained. Possibly because the staff working on a

data conversion project need to be most knowledgeable of the source system—

and so they tend to focus on what they know best—in practice the data conver-

sion staff spend too much time focusing on the source data structures and not

enough time on the target data layout and structure.
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In developing the mapping requirements for mapping data from source to target,

best practice is to start with the target data layout and then find where in the source the

data can be found. Before starting development using these requirements, one should

test manually, entering data through the front end, and verify that the data is loaded by

the application into the positions in the target data structure that was anticipated. It is

also a good idea to test that an API works as anticipated, before entering the develop-

ment stage. Because the behavior of the target application from the names of data

fields or metadata can be very risky, assumptions should be verified by testing.

A double check should be performed at the end of the requirements process

that important aspects of the source data are not being ignored. Items that are pos-

sibly being left behind in the data conversion should be highlighted and approved.

Sometimes important functionality in the source system that is not in the target

system should be brought to light.

The target data structures may be modeled or configured and the source

structures may be considered as the model for the target. Using the physical

data structures of an application being retired is tricky, since the application

system may have existing limitations inherent in the data structures or related

to the particular technology implementation. If a modeling activity for the tar-

get data structures is needed, that activity should be as independent of the

source data structures as possible and the source data model should only be

used as a double check that all required data has been accounted for in the

target model.

Configuration data
In a new implementation of a purchased vendor application, there are usually con-

figuration settings for the application that are stored in the application data struc-

tures: business rules, field definitions, and edits, as well as a vast set of other data

that must be set up appropriately in order for the target application to run as

expected. This information should be classified as reference data or may have its

own category of configuration data. This configuration information should be

treated as application code that has to go through change control and application

testing before being changed in a production environment. Frequently, the proper

settings for this data are obtained from the target application implementation

team, and the correct values may change during the application testing process.

For a new application implementation, a backup of the target data structures

with the configuration and reference data appropriate for the first day of produc-

tion application processing (“day zero” data) should be kept and retrieved for the

start of each round of conversion and application testing. If some or all of the

master data is being converted manually, this master data may be part of the “day

zero” set of data that is retrieved for the start of each testing cycle. Lookup tables

or transformation mapping tables may also be included in this data set.
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Testing and dependencies
Tests of data conversion are done independently as well as in conjunction with

application testing. Each section and type of data being converted is tested indepen-

dently, after which types of data should be tested together and finally all conversion

data tested together. There may be timing requirements and dependencies from the

existing production application system from which the data is being sourced or

from the target application system into which data is being loaded. Is there a break

in the production process of the systems while conversion is being performed? If

not, what is the process if the conversion needs to be rolled back or fails?

If possible, data conversion should populate the environment used in applica-

tion testing for as many types of testing as possible. The list of types of applica-

tion testing includes unit testing, integration testing, quality assurance (QA)

testing, and end-user testing. There may be additional types of testing, special

conversion testing, or QA and end-user testing may be combined.

Business users will sometimes not recognize application functionality as being

correct or incorrect without their own data. Therefore, it is particularly important

to be using converted data by the time real business users participate in testing. It

is a good idea to integrate data conversion and application testing before first-

time business users participate in testing; this will eliminate as many issues as

possible prior to their involvement. The last round of user acceptance testing prior

to production conversion must be prefaced by a full data conversion test and sign-

off by the business users.

Private data
In some cases, the developers or application support staff for the target application,

or even for the data conversion, are not allowed to see some of the production data

for security purposes. Possibly, associated with the source data, there may already

exist a set of test data that has been scrubbed or masked of sensitive or private data

that can be used for data conversion testing. If scrubbed source data doesn’t already

exist, then an additional track needs to be added to create scrubbed source data for

data conversion and application testing. The development of requirements for data

scrubbing of test data needs to be included in the requirements phase and approved

by authorized security staff and business owners of the source data. However, it is

risky not to be using production data in the early stages of data conversion testing;

hopefully, the scrubbed data used for testing is full volume and created from recent

production data. It is even riskier not to perform profiling on actual production data

during the analysis phase. If at all possible, profiling should be performed on pro-

duction data by analysts with appropriate access authority. If profiling is not

allowed to be performed on production data, this should be listed as a project risk

and mitigation steps should be considered.
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The final phases of data conversion testing and final user acceptance testing

with converted data will need to use unscrubbed data, as well as the production

data conversion. Plans should be made for adequate support of the source and

target data structures during final testing with staff authorized to gain access to

the sensitive data.

Proving
Along with developing the conversion process and code, data conversion must

include a process for proving that the conversion is correct. Proof of the data con-

version should be entirely independent of the data conversion itself, using none of

the same code. Proving processes should be developed for each section of data

and an overall proof for the entire data conversion. Where possible, the overall

proving process should use financial data for performing the proving.

Data conversion proving is best performed by comparing application financial

reports generated from the source and target systems. This would usually be reports

of current financial balances that could be compared between the two systems. Best

practice is to use actual application reports from the source and target applications

for proving whenever available.

Master data conversions may have to be proven by counts of the number of

instances in the source and target data structures. Events, transactions, and

balances may be proven by both the counts of instances and a sum of numeric

fields of both financial and nonfinancial types (such as inventory counts). A

financial proof is usually performed for each customer, depending on the nature

of the application.

The earlier that the proving process between the two systems is planned and

developed, the earlier in the development process that incorrect assumptions and

mistakes can be corrected. Most data conversions that leave proving out of plan-

ning or leave it until the last minute encounter significant unexpected delays in

the production conversion.

Environments
Having sufficient environments for application testing as well as conversion test-

ing is always a challenge, and it will seem that every person on the project is

asking for a separate test environment and cannot possibly share. From the start

of the project, coordinating testing will be important.

Figure 8.1 shows a possible configuration of environments during application and

conversion development. Application developers will want to have environments for

both unit testing and integrated system testing. It is usually possible to coordinate

a single test environment for both unit and integrated system testing. Depending on

how application testing is organized, there may be a request for separate environments

for QA testing from user acceptance testing. However, this can usually be coordinated
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to form one environment that can be used for different testing during different phases

of the project. At least two test environments usually exist separately from the

production environment after the application has been turned on for production

operation: the unit/system testing environment (sometimes called development) and

the QA/user acceptance testing environment. Since these environments are needed on

a permanent basis, they are usually included in the project estimates.

Data conversion testing usually requires at least one separate environment

from development and QA. In fact, data conversion testing probably needs one

environment for data conversion testing and another environment for data conver-

sion proving testing. Let’s assume that the two data conversion development

streams (conversion and proving) can coordinate their testing and coexist. It is

still very difficult to coordinate all the data conversion testing with the application

testing and limit environment needs to the two application test environments

(development and QA). It is usually most efficient to have a separate environment

for full-volume data conversion testing, if at all possible. When a separate envi-

ronment is not possible for data conversion, it may be possible to coordinate the

project plan so that data conversion testing occurs slightly upstream of application

testing: While unit and integrated system testing are occurring in the development

environment, data conversion testing occurs in the QA environment. In the case

where a new application system is being implemented, it may be possible to

continue data conversion and proving testing in the production environment

(which is not yet turned on), while QA and user acceptance testing is occurring in

the QA environment.

FIGURE 8.1

Environments Data Flow.
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Using cloud resources for temporary testing environments can relieve some of

the pressure for extra environment resources. Depending on the location and security

of the cloud resources, it may be better to put the unit and system testing environ-

ments on temporary cloud resources and the conversion testing on more secure

resources, eliminating the extra environment(s) when in production and moving unit

and integrated system (development) testing back to the permanent environment.

Business user application testing usually occurs in multiple cycles, each start-

ing with a reset of the application data store and population by data conversion.

Changes to software code and configuration may be planned to occur only at the

start of each testing cycle. Data conversion may be responsible for an initial set-

ting of the data stores with configuration and reference data. Each testing cycle

would begin with resetting the target data stores in the test environment with the

initial settings of configuration and reference data, followed by an execution of

the data conversion to populate the test environment, then by a data conversion

proof, and finally by the execution of the application testing scenarios scheduled

for the cycle. Problems with the data conversion or application are logged and

addressed in the respective code and process.

Agile development uses short cycles of development and testing, called scrums,

to ensure that application code is developed efficiently to meet what business users

actually want and need. Whether multiple scrums or just one scrum is scheduled

before production implementation, data conversion development, testing, and prov-

ing must be part of the agile development team in order to stay coordinated.

A SIDEBAR FROM THE AUTHOR . . . ON DATA CONVERSION
I have spent too many of my weekends during my career doing data conversions or data
conversion dress rehearsals. Some might say one is too many, but I found myself with an
expertise after a while, and so I would get called in to apply my skills to subsequent data
conversion planning and execution.

During one data warehouse project, a data architect who was responsible for designing
and managing the data conversion financial proving process, started her analysis extremely
early in the project and discovered a myriad of unexpected information about the source
systems and the data that she was trying to use to perform the financial proof. Most
interestingly, there had been times in the history of the accounting system when the system
had made mistakes. The system had been fixed and adjusting accounting entries had been
made in the system, but at a higher organizational level than we were using as input to our
data warehouse. Therefore, the data in the source system at the level to which we were
supposed to prove was incorrect and would never match. The information that the data
architect identified by designing and prototyping the financial data proving process prior to
the data warehouse code development probably saved us months of delay that would have
been caused if we had started the data conversion design later in the project life cycle. The
moral of this story is that it is never too early to start designing and developing the
conversion proving process. The earlier issues are identified, the smaller the negative
impact it will have on the overall project schedule.

When developing a data conversion financial proving process, early in the project you
will probably ask the lead business user the question: “What if we find that the information
in the source system that we are attempting to prove to is incorrect? Do you want us to
prove to the source system or to what is correct?” They will answer “What is correct.” This
is not true. You will need to prove to the source system AND what is correct, in some way.
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What is data archiving?
What we don’t currently emphasize greatly in data management is the end of the

data life cycle, when data is archived and, possibly later, deleted. This has been

the case because we’ve wanted to have available as much data as our technical

solutions could store and if we couldn’t store all of it then the oldest data would

just be deleted after backup. Now, in the era of big data, there is exponential

growth in the amount of data being produced and the ability to move data aside

and retrieve it is more important. Also, and maybe more importantly, it is being

discovered that data backups are not sufficient for archiving solutions since they

usually don’t allow selective retrieval and they lose validity when the live data

structures change or applications and technology stacks retire.

Archiving data assumes that the data is moved to a less costly (and possibly less

accessible) platform from which it can be retrieved or accessed in the future—either

brought back to the original application for access or possibly accessed within the

archive environment.

Data archiving is an important area of concern for all organizations, but it is

particularly important for mergers and acquisitions, system consolidations, and appli-

cation replacement. It is important for all data conversions where some data is not

being converted to the new environment, especially in heavily regulated industries.
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Archiving is heavily utilized with unstructured data, such as e-mail and

documents, where there are huge volumes of materials that usually are less likely

to be required for access as they become older but for which there may not be a

deletion policy. Archiving and retrieval capabilities are frequently built in to

e-mail and document management systems, and there are also third-party tools

that focus on unstructured data types.

Selecting data to archive
Identifying what data needs to be archived is usually done automatically based on

an organizational policy that incorporates any regulatory requirements. Selection

criteria may have to do with the age of the data, either when it was created or,

more likely, the last time it was updated or accessed. Regulatory requirements

may specify the minimal time that data is maintained. For example, consumer

loan information must be available for seven years after a loan is rejected or

completed, which may require that data be archived if the organizational policy is

to keep that data online for less time.

Once the appropriate policy is identified for a data set, the selection and

archiving of the appropriate data is usually scheduled to be performed automati-

cally by the archiving system. As with all automated business rules, the archival

rules should be reviewed by the business area that is responsible for the data to

be in synch with the organizational and regulatory policies. The rules should then

be tested to ensure that the appropriate data is being archived.

Can the archived data be retrieved?
Regulatory requirements in many industries, such as pharmaceutical companies,

mandate that data from an application being shut down be archived, along with

the application code and hardware on which it runs. This is a very intelligent

approach to recoverability, since a simple data backup is not recoverable if the

hardware that it ran on is no longer available. Less strict regulation may simply

require that the data itself be retrievable. Standard data backup capabilities can

move the data to offline storage, but bringing the data back into the operational

application can be problematic if the structure or schema of the data in the appli-

cation changes after the data is archived. The structure of data even from the

same original data structure or table might change over time, and archived data

taken from the same application at various times might be incompatible.

A comprehensive archiving solution should be able to retrieve data even if the

application data structures have changed since or even if the application is no

longer available.
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Conforming data structures in the archiving environment
Archived data is usually placed in storage that is less expensive than the data

involved in real-time transaction processing applications, is less speedy, and is

usually in a compressed format.

When the archived data only needs to be accessible and does not need to be

brought back into the operational application environment, it may be useful to

transform the data being archived into a common technical format. It may be

decided to store all the data in the data archive environment in the same database

management system, for example.

However, trying to create a single logical data model in the data archive envi-

ronment and to transform the archive data into that format is both cost prohibitive

and extremely risky. While it is appropriate for an enterprise data warehouse to

be able to report and analyze organizational data using a single logical data model

or for an enterprise service bus to be able to move data around an organization, it

can be very expensive and has very different goals than archiving. Also, the trans-

formation of the data from its original form to that of the model in the archive

environment could produce errors and loss of some of the data’s meaning.

Flexible data structures
It is critical that data being archived be done so along with the associated metadata,

that explains the meaning of the data and its history.

When archiving data that may have to be accessed independently of the applica-

tion from which it came, it may be best to use a data structure or storage solution

that can both keep the data with can be metadata and allow flexible and changing

data structures. An XML type of solution allows for a changing data structure, asso-

ciated metadata, and still permits queries across data that had been archived from

the same application—even if the source data structures had changed.

A SIDEBAR FROM THE AUTHOR . . . ON DATA ARCHIVING

I worked on a project in which a retail bank had purchased other banks in the United
States. They wanted to consolidate their operations onto one set of application programs
and had selected the systems they would use per product. Not all the historical data was
to be converted to the core applications, but regulatory requirements, as well as customer
service requirements, specified that the data from the applications to be retired needed to
be maintained for quite a few more years. Although I proposed copying the historical data
to data structures that mirrored those of the applications to be retired, management chose
to transform the data to a common logical model in a central new database.

My original proposal was probably not optimal because of the requirement that multiple
technologies be maintained to store the archived data. It is preferable to have a single
archive solution with all the data accessible. On the other hand, even traditional business
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intelligence solutions can access data from multiple relational database management
systems, so accessing the data from multiple database management systems should not
have been a particular challenge.

The problems with transforming the data into a common logical model are twofold: First,
it is a very big project to define a common logical model and map various data structures
to it; and second, errors may be introduced in the transformation that are not detected until
long after the data archiving when the data needs to be retrieved. As anyone who has
worked on an enterprise data warehouse project can vouch, creating a central common data
model is a difficult and time-consuming task. Additionally, mapping data from its original
structure to a common central structure is difficult and time consuming. Unless it is central
to the success of a data project, such as an enterprise data warehouse or master data
management application, it is best practice to avoid creating and mapping to a central
logical data model.

It is generally agreed that it is best to archive data in its original logical structure using a
technology that keeps the metadata with the data and can handle variations in data
structures, such as an XML or JSON solution. Data can be accessed and integrated in one
technical solution, with little risk of losing some of the original data content.

INTERVIEW WITH AN EXPERT: JOHN ANDERSON ON DATA ARCHIVING
AND DATA INTEGRATION

Following is an interview with John Anderson on the importance and use of data integration
in data archiving.

John Anderson is an enterprise system project manager and architect with more than
14 years of professional experience in information systems management and development
in the Life Sciences and Financial Services industries. He has worked on a large number of
enterprise archiving projects throughout these industries as both architect and manager.

How is data integration (i.e., moving and transforming data) related to data
archiving?
My approach to archiving has always been to analyze the usage for the data and from that
analysis create scenarios for archiving based on risk, compliance, needs for data access,
costs, and value. These scenarios then naturally devolve into larger categories of archiving
patterns. A key part of most of these patterns (with perhaps the exception of “Live”
archiving) is extract, transform, and load (ETL) activities. ETL work in larger projects is
often the long pole in the tent, from a project management standpoint: These activities
often take the longest time to complete and are the most-error prone, all while being the
most essential.

The definition of archiving boils down to something like the following: “Archiving is the
storage, searching, and retrieval of digital content.” Among its many uses, archiving serves
as an aid to the migration of systems and data, for the preservation of intellectual property;
to improve system health and performance; and to support litigation and other legal
requirements. Simply put, the three corners of archiving (storage, searching, and retrieval)
don’t occur without data integration; there is always a source and target system.

How and why is data moved for data archiving?
The how is often the bigger question, but we won’t forget about the why.

Data is usually moved from source system to target archive through some ETL platform
and/or data-dumping mechanism from an underlying database structure. In cases of
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unstructured data migration, data stored in files, which may be in coded form
(e.g., Microsoft Office) or noncoded, pictorial form (e.g., scanned TIF images), data of the
underlying operating system or storage system are used as the key for tagging and
tracking the data. In many cases, simple OS copy utilities can be utilized. The key,
however, to any data moving for archiving relies heavily on two of the three corners of
archiving mentioned earlier: searching and retrieval. Data moved without the ability to be
appropriately indexed and retrieved is useless.

I have seen many an archiving project spend countless hours migrating terabytes upon
terabytes of useless data. What’s important to understand as a part of the ETL or migration
activities is how the data will be used in an archived state and what is actually required to
be kept.

This discussion moves us along to the why part of the question. In my opinion it is vital
to understand why data is being archived. Many companies have taken a “keep it all”
strategy. At first glance this can seem to be a viable option because who can understand
what the future may hold, and nowadays disk (i.e., storage) is relatively cheap. However,
experience has taught us that from a liability standpoint, and sometimes from a regulatory
standpoint, storing more data than is required is not the best business choice. Often older
data may open a company up to legal exposure that was not necessary given legal,
regulatory, and often even the own company’s retention policies. As part of my own personal
methodology for archiving, any target application or source of data needs to pass the “Why
archive?” question. I need to understand what legal, regulatory, and business practices
mandate that this data be held onto. That analysis all comes down to does it save or make
money, keep us compliant (i.e., out of jail), or significantly increase efficiency. Once those
issues are understood and evaluated, then archiving can proceed.

What kinds of transformations are done to the data being archived? (e.g.,
compression, different data structures, etc.)
Any number of transformations may be done on data that is being archived, depending on
the archiving platform. Typically, at a minimum, some type of compression can be applied
to the underlying data store after the data has quiesced. Sometimes this compression is
done through manual effort from archiving tools or the underlying hardware itself through
complicated compression algorithms and disk striping methodologies.

Another common transformation that occurs in archiving, regardless of industry, is the
transformation to a durable format. A durable format could be a number of things from the
media standards use to store the data (i.e., WORM, COLD media types, optical disk, etc.) or
the actual format of the data that is being stored being encapsulated or snapshotted to XML
or PDF. The latter two format changes seem to reflect the most common trend in archiving,
as they are industry recognized as more standard and relatable formats. The use of XML
encapsulation/transformation and its self-describing nature has resulted in the usage of a
wide number of archiving tools that leverage XML databases as opposed to typical relational
databases.

How is data integration for data archiving different from backup and recovery?
Archiving is concerned with preserving the data and information stored in the system and
not necessarily the source system itself. The format data may have in an archive may not be
a mirror image of the “application context” it had in the source system.

How is data archiving for structured data (i.e., relational databases and XML)
different from data archiving for unstructured data?
The primary difference is actually in the data analysis and the tools. As stated earlier,
two of the key parts of archiving are search and retrieval of the data. Structured data,
whether XML or relational databases, are especially designed for that searching and
retrieving. Unstructured data by its nature is free form. Typically, the only way to search
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and index this data is full-text indexing, which involves a whole other level of complexity
as well, to ensure that whatever tools or code being developed can read the variety of
unstructured content that exist in your source systems (multiple office formats, PDFs,
texts, spreadsheets, proprietary databases and images). Images can pose a particular set
of issues, given the huge variety of formats and encapsulation techniques used. I recall
projects in which we could not move forward with archiving purely because we were
dealing with a variety of imaging formats and had to develop specific code to deal with
this variety.

Have you seen any data archiving projects where data integration issues led to
significant problems?
Absolutely. By data integration I am referring to the ETL process. Often in archiving
projects, the ETL from legacy systems has presented problems. In one situation I recall that
my team was trying to extract data from a legacy mainframe system that was built around
ADABAS. Some of the constructs specific to Natural programming and ADABAS presented
significant issues to our ETL process. The programming construct that basically provided
dynamic duplication of code pages and values was a nightmare to convert to a more easily
understood format. We would often end up with thousands of blank fields of data as the ETL
process tried to interpret empty arrays and data structures based purely on their dimension
as opposed to actually utilized elements.

Have you had experiences where data integration was neglected on a data archiving
project?
Yes. I have worked on projects in which the idea was simply to get the data out of the active
applications and into archive repository. Typically, these projects are those that deal with
semistructured or unstructured report-type data with well-understood attributes or a
common format. In these projects, the ability to just dump the system into some type of
content management repository made the archiving relatively straightforward since the ECM
system provided some level of full-text indexing and allowed more robust searching.

What kind of issues can arise with data recoverability from archive?
Data that cannot be easily retrieved from the archive is essentially useless. Often the
business case around archiving is built around return on investment (ROI) from
decommissioning redundant and legacy systems and being able to respond to legal
discovery concerns. If the archived data is not readily recoverable, then its use from a
discovery standpoint is limited, given the time constraints on legal matters

What do you think about transforming data into a common format in the archive,
either a common technology or a common schema? Have you had any problems with
this in the past?
The creation of a durable archive format is the intent of any good archiving system.
Transformation to that format, and in fact determining that format, is the rub. The format
types have changed over the years. When first being involved with archiving back in the
early 1990s everything was about WORM drives and optical disks as the format that would
last forever. There was no concern for the data form, but the media format became the
focus. Only later did people begin to realize that the media format was not as durable as
originally thought, and if you don’t change the data format you now need to mothball these
old systems in order to read the format.

What kinds of tools or technologies are used to support data integration for data
archiving?
The technologies include ETL tools and platforms, scripting languages (such as Perl), OS-
related command tools, XML utilities, converters, and parsers. The key aspect of all of these
tools is the driver for the multitude of databases and data formats that exist. I have had

64 CHAPTER 9 Data Archiving



more than one project sidelined because the tools we chose could not handle a certain type
of database well or efficiently.

Are the tools for data archiving different for structured and unstructured data?
Yes, one of the key areas for archiving structured data is data analysis. To ensure that

archive users can get to what they need, you need to understand the data you are archiving
to ensure that archive users can get to what they need. This lends itself to any variety of
database toolsets that do entity relationship diagramming and more complex data analysis.
Now that’s all well and good for structured data where you have some tool set to easily
navigate, but when dealing with images and other types of unstructured and semistructured
your primary tools are going to be focused on being able to inject more order and structure
into the data. Unstructured data analysis tools now look at patterns on the objects and text
in the objects as well as where the file is stored, who last accessed it, what location it is in,
the file name, size, and so on. It becomes more of a forensic science than just interrogating
the data itself.

How do you think the area of data archiving is changing? Where do you think this
area is going to?
Most companies are focusing on portfolio rationalization, often resulting in data/application
archiving as an offset driven primarily by regulatory compliance needs. Forrester Research
estimates that, on average, structured data repositories for large applications grow by 50
percent annually and that 85 percent of data stored in databases is inactive.

Do you think the technologies for performing data archiving, especially around data
integration, are changing?
Yes. Varying types of data warehouses (containing both structured and unstructured data)
are in evidence, as are a move toward XML-based databases for use in the archive and the
use of other nonrelational data stores.
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What is batch data integration architecture?
In order to enable batch data integration, it is necessary to have the tools to

support analysis and development of the data integration code as well as the tools

to support the operation of the data integration activities.

Some tools can provide multiple functions. This is a very mature area of data

management, and some of the available tools are extremely sophisticated: They are

able to handle very high volumes, fast load times, and extremely complex transfor-

mations, with operational data movement, transformation, and scheduling built in.

Very complex capabilities come with a relatively high price tag and the need to be

operated by specialists who are experts in using the tools. Most medium to large

organizations invest in a sophisticated batch data integration capability for at least

one area of need, such as loading the data warehouses and data marts. Figure 10.1

shows the tools and systems needed to implement a batch data integration capability.

Profiling tool
A profiling tool is important for performing analysis of the source and target data

structures for data integration, whether the transformation will be performed in a
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batch or real-time environment. It is possible to perform profiling using just the

utilities of the source data environment, but specialized profiling tools make the

analysis process much more efficient, especially on large volumes of data. Some

data-profiling tools can actually infer the relationships between data based on the

actual data contents of the various data structures. Basic metadata tools can infer

relationships between the data based on the names of the fields or attributes in the

data structures.

Modeling tool
Modeling may be needed for the intermediate staging and file layouts, not just the

source and target data structures. The most efficient use of resources is to develop

robust models that can be reused for multiple functions, such as data file layouts that

can be used for multiple data conversions or for loading data into the data warehouse

from multiple sources. Modeling tools should be able to model interface and file lay-

outs as well as operational data structures, such as databases. In addition to data

modeling, process modeling tools may be needed to design the flow of data between

applications.

FIGURE 10.1

Batch Data Integration Architecture.
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Metadata repository
Most of the tools listed for use in data integration will have their own underlying

metadata repository. One benefit of an integrated tool that performs multiple

functions needed for data integration is that it is probably using the same metada-

ta repository across those functions. This is not always the case, however, as a

tool might be using different repositories for different purposes. Sometimes a

vendor will buy a tool to perform a function that is missing from its current set of

capabilities, or to perform it better, and multiple metadata repositories may be

functioning in the background. All tools that act on data in the organization,

including database management systems and document management systems,

work with a specialized metadata repository that contains information on the data

under management.

There are three basic categories of metadata: business, technical, and opera-

tional. Business metadata is the information of particular interest to business users

and was probably developed by business people, such as the business definitions

of terms associated with data. Technical metadata is the information that is

needed for the programs to function, such as the technical name of a field in a

database or the calculation that needs to occur to transform a piece of data from

one format to another. Operational metadata is the log of what actually occurred,

such as the date and time that a particular piece of data was loaded into the target

data structure.

There is metadata about every layer of the technical environment and its use:

network, servers, databases, files, programs, as well as who is allowed to access all

these different layers. For data integration, there are some new pieces of metadata

that are particularly of interest: data transformation information and lineage. Data

transformation metadata is the information about how data from one environment

should be transformed to another. The common term for data transformation is

mapping. Mapping is both a noun and a verb. It is the act of defining what the data

transformation should be, and the resulting specification of this transformation is

also called the mapping. Lineage is the history of where data came from and how it

was transformed along the way. Lineage information is operational metadata about

the source of data. Lineage metadata presents an inherent challenge because it is

based on the technical metadata mappings that were performed on the data, and

although it is of great interest to business users, it tends to be incomprehensible. It

is usually necessary to create additional business metadata that explains in business

terms the lineage of data.

Data movement
Some tool is needed to move data from location to location, between servers or

networks or organizations. Utilities specialized for different environments or a
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special tool that handles multiple environments and any physical data storage

transformation might be used. The data movement tool may require sophisticated

security capabilities as well, if passing data between organizations.

Transformation
Data transformation can be extremely simple or extremely complex. It is neces-

sary to develop the data transformation, or mapping, instructions. The tools for

developing transformation code provide options for the various types of transfor-

mation categories, whether one is simply moving the data from one field to

another or one needs to merge data from multiple sources and look up how values

from the source should be transformed to valid values in the target. Usually the

transformation development tools have sophisticated user interfaces. The more

complex the tool capabilities, the more likely the need to involve specialist pro-

grammers for the transformation development who are experts in using that tool.

Vendors may show demonstrations that appear to be very easy and may indicate

that business people who are not programmers can use the data transformation

tool, but this is not realistic.

The data transformation development tool will store the metadata about the

transformation in the metadata repository. Either the transformation tool will gen-

erate the code that can be executed to perform the transformation, or it will

perform the operational transformation itself. Some data transformation tools are

complex operational systems that execute the transformations using the stored

mapping metadata as instructions in how to transform the data. These operational

transformation engines are designed to handle very high volumes of data transfor-

mations at very high speeds. The operational transformation engines (or data inte-

gration engines) are designed exactly for this function and can be tuned with

professional advice to be extremely efficient. Most organizations use a data

transformation engine for batch data integration.

Operational transformation engines have a few drawbacks that should be con-

sidered when designing the batch data transformation architecture: If the engine

isn’t working, the data transformation can’t be performed; the organizational

needs may be much simpler than the capabilities of the tool; and the organization

may have the need for even greater speed than the operational engine can provide.

Adding a data transformation operational engine may raise the cost of operating

the data transformation environment because the technical specialists must be

available to support any problems that occur in the execution of the data transfor-

mation. If the engine is down, the execution can’t occur, so the engine must

become part of the set of applications that require immediate problem resolutions

even in the middle of the night.

If the need for batch data transformation is rather simple, running the data

transformation engine may be the most complex and costly aspect of operating
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the environment, and batch data transformation could be performed more effi-

ciently using generated code. Very rarely, organizations with extremely complex

batch data transformation needs sometimes find that they cannot tune the data

transformation operational engines to be sufficiently fast for their needs. Further,

they will find that they are able to tune data transformations using code that can

be compiled and other alternative approaches to meet their batch data transforma-

tion time limitations. The very few organizations that have more complex data

transformation needs than can be handled by the standard transformation engines

will probably be investing in a custom solution, which is more expensive than the

cost of purchase and operation of the vendor transformation engines.

For various reasons, as listed earlier, batch data transformation is sometimes

performed using code generated from the data transformation tool, or it can be

hand written, which can then be compiled and executed. This arrangement may

suit organizations that have few and simple data transformation needs or vastly

complex and difficult data transformation needs, the two ends of the spectrum.

Not having a data transformation engine in the operational environment makes

the environment much simpler, but requires greater manual care of the metadata

and scheduling. A data transformation engine will generate lineage metadata that

is unlikely to be otherwise available, unless particularly programmed.

Scheduling
Many organizations have standard scheduling tools for executing batch opera-

tions. Data transformation engines have their own scheduling capabilities or sche-

dules that can be invoked from a standard scheduler. Code generated from a data

transformation tool or custom code can be executed by a scheduler.

Most organizations prefer to have their batch data transformation triggered

from their standard scheduler as part of the integrated “nightly” batch processing

for the entire organization. Much of the data to be extracted from the organiza-

tion’s application systems and transformed is dependent on being at a particular

“state” in the processing cycle. Each application may have a certain amount of

batch processing that needs to occur before the data in the application reaches the

correct state ready to be extracted. By running all batch processing from the same

scheduler, any dependencies between systems can be automated into the schedule.

Also, an organization may prefer to have all schedules run from the same sched-

uler so that production support of the schedules can be performed and managed

centrally using resources trained on one standard set of tools.

For organizations that don’t have a standard scheduler and don’t run and

support a centralized production schedule, batch data transformation tools provide

a scheduler. It is necessary to establish a trigger from each application, providing

data to the batch data transformation to indicate when the data is “done” or in the

proper state and ready for extract.

71Scheduling



A SIDEBAR FROM THE AUTHOR . . . ON BATCH DATA INTEGRATION
METADATA

My advice is to take everything you read (as in existing metadata) or hear about the contents
of data structures with a grain of salt. I have created many data dictionaries that provide
definitions of the business terms in an organization and usually that map to the actual
database fields where this data can be found. When I was a consultant, and therefore not an
employee of the organization in question, I found it very difficult to get permission to get
access to the actual production data in question, so I was generating these definitions by
looking at the field names, checking existing metadata about the field, and talking to
business users and technologists who support the data. I tried to warn clients that the
probability of these definitions and mappings being wholly correct was remote. Yet, I ended
creating data definitions frequently with little idea about what was actually being stored in
the data structures. Thus, future analysts would read the metadata I had generated and
possibly assume that it was correct. A colleague of mine used to say that anything learned
about a piece of data before actually looking at it was just rumor, and my experience has
been that what is found in a production data environment contains unexpected results
almost every time. Data contents are frequently null or blank, contain all defaults, or
present entirely different information than the field name would lead you to believe. Once
again, I am suggesting that data profiling is absolutely crucial to data-oriented projects.

A SIDEBAR FROM THE AUTHOR . . . ON METADATA REPOSITORIES

Every tool and data structure technology has an underlying metadata repository for its
associated configuration and, at least, technical metadata. However, data projects
frequently seek to consolidate metadata into a single repository in order to be able to
analyze and report on the metadata across types and regarding relationships and lineage,
and so on. Depending on the organization and analysis need, the return on investment for a
metadata repository project can be very compelling. But the investment required to
purchase and implement a central metadata repository can be very high, close to or over
one million dollars. The first time I assessed the market in central metadata repositories, in
the late 1990s, I decided that the players were too new and didn’t have sufficient
functionality to make an investment at that time and for that project, a data warehouse
project, a good choice. Instead we used the tool repository from the ETL tool for the analysis
and reporting needs.

Years later, when I again needed to assess metadata repositories, I found that the
maturity of the market had not significantly changed from my previous analysis. In fact, it
seemed that most of the vendors were entirely different except for a couple players. The
top tools had developed compatibility with more types of metadata, but the market still
seemed immature and the top solutions sometimes were in near obsolete technology
platforms.

The big advance in centralized metadata has come from the leadership in metadata
standardization, especially from the Object Modeling Group (OMG), a consortium focused
on modeling and model-based standards. Since OMG has identified common formats for the
expression of metadata, central metadata repository vendors can more efficiently build
integration with various tool repositories without having to deal with myriad proprietary data
structures.
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Vendors of central metadata repositories are selling very robust and effective products
these days. Central metadata repository implementation projects are very much like data
warehouse projects, where metadata from various source systems or tools are fed into a
central repository. Be careful on entering into such a project, however, and make sure there
is a very concrete expression of exactly what will be gained from the project, as they are
notoriously expensive with strangely elusive return on investment.

INTERVIEW WITH AN EXPERT: ADRIENNE TANNENBAUM ON
METADATA AND DATA INTEGRATION

Following is an interview with Adrienne Tannenbaum on the importance and use of
metadata in data integration.

Adrienne Tannenbaum has specialized in metadata aspects of IT since 1994 when
Microsoft partnered with Texas Instruments to architect the first metadata repository. She is
a recognized leading expert on metadata and the author of two books on the subject:
Implementing a Corporate Repository (Wiley, 1994) and Metadata Solutions (Addison-
Wesley, 2002). She is a frequent conference speaker and author of many articles in various
technical publications.

How is data integration (i.e., moving and transforming data) related to metadata?
Moving and transforming data, from one source to another, is based on an underlying
metamodel, which describes the physical structure of each source. Simply speaking the
“data” is described by “content” in a metamodel, and this “content” depicts the full
transformation story.

What kind of metadata is kept regarding data movement and transformation
(business, technical, operational)?
All of the above. In order to move data, we need to know the source (technical), we need to
know what it means (business), what will happen to it (business and technical), and where
it is going (technical). The process of getting it from one place to another is operational.

Have you seen any data integration projects where metadata issues led to significant
problems?
Virtually every project that I have worked on has failed to give the right amount of emphasis
to “business” metadata.” Even when the technical metadata is complete, it is not
associated with sufficient business metadata such as classifications and business rules,
and is therefore misunderstood by the most important people—the business owners— the
people who need and use the data that is being integrated.

Have you had experiences where particular attention was paid to metadata for data
integration?
I always emphasize the need to capture the business aspects of all data integration efforts.
For example, most ETL tools do not require “descriptions” to be associated with the
transformation logic, but a good analyst makes sure that those fields are populated.

Have you had experiences where metadata was neglected on a data integration
project?
Always. I have yet to work on a data integration effort where the metadata aspects were
not neglected. Most project participants do not realize the value since they are
convinced that everyone else has the same knowledge base that they do regarding the
data itself.
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If some already know the answers, they can’t understand why they should take the time
to document the answers. I always hear about not having time, or being under a tight
deadline,and so on.

What kinds of tools or technologies are used to support data integration metadata?
ETL tools have fields such as “definition” and “description” which can be used to capture
the “business” aspects of data integration metadata. Of course, the metamodel for each
tool has the ability to keep the metadata, which covers the full integration picture
(business, technical, operational).

Centralized metadata repositories support all types of metadata and are able to integrate
specific aspects of “integration” metadata with the details that may already exist in the
repository with respect to the sources and targets, as well as the business metadata that
surrounds the entire lineage.

And of course, unfortunately, the most popular tool that supports data integration
metadata is an Excel spreadsheet.

Do you think there should be a central metadata repository in addition to having data
integration metadata in the separate tool repositories? Why or why not?
Central repositories contain the only view that is enterprise focused. Data integration is
based on sources that are already in existence, and perhaps are also being used for other
“integration efforts.” Unless one integration effort is aware of another integration effort, an
organization runs the risk of what I call the “batch in�batch out” architecture. Unless there
is one view across the organization, no one will really know what is going on with major data
sources—even if they are well documented for a major data transformation effort.

Are there special considerations around the movement of metadata for data
integration into a central metadata repository or into a data warehouse? Are there
other places that data integration metadata is needed?
Every source needs to be named consistently so that the same source is not identified
twice. But physical sources are typically “scanned” into central repositories, and this issue
is resolved based on their identification within a database management system (DBMS)
catalog. Problems can arise with manual identification, such as when sourcing information
from a spreadsheet.

How is data integration of unstructured data different from that of structured data?
Unstructured data is integrated with structured data by association of both types of data
with a fixed classification or taxonomy.

How do you think the area of metadata is changing? Where do you think this area is
going to?
Metadata is no longer being considered an “area.” Instead it is a recognized characteristic
of life within IT. The concepts are now becoming “governance” concepts and are more
related to metadata content, when it should be populated, why, how, and what valid values
should be used.

Do you think the technologies for metadata, especially around data integration, are
changing?
Metadata itself is becoming more of an automated capture. The business side of metadata
will always require manual intervention of sorts, at some point on the timeline. At best,
keyword searches can make best guesses as to how data should be identified or categorized,
but the definitions and associations will always require a person.
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Why real-time data integration?
For most data integration requirements, overnight, batch data movement is simply

no longer acceptable. It is not acceptable to be unable to see the results of a busi-

ness transaction until the next day. Nor is it any longer acceptable for a customer

to open an account with an organization but be unable to transact the same day.

Real-time data interactions usually have limitations on the amount or size of

the data that can be involved in one interaction. The term for the block of data

involved in one real-time interaction is referred to as a “message.” On the other

hand, there are few limits on the size of data involved in a batch interaction. It is

also necessary for each real-time interaction message to traverse all the levels of

security described for batch interaction, but since this needs to occur for each

smaller set of data, or message, real-time data movement tends to be slower for

large volumes of data than batch data movement. In some types of applications,

the volume-handling capabilities of batch data integration are advantageous and

lend themselves to a batch approach to data movement, but most data integration

activity is now performed real time or close to real time.

Real-time interactions between application systems are usually called inter-

faces, the same term that is used for the batch interactions between application

systems. The portfolio of applications to be managed by an organization, which

can be daunting for even medium-sized organizations that have only hundreds of

distinct active applications, can sometimes be overwhelmed by the complexity of

managing the interfaces needed between the applications.

The technology for handling real-time data integration is slightly more compli-

cated than that for batch data integration. The basic activities of extract,
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transform, and load are still present, but of course, they are occurring real time

and at a business transaction level.

Managing real-time interfaces between each application or “point to point” is

significantly less efficient than managing the set of all necessary interactions

between applications in a portfolio, as will be explained in this chapter.

Therefore, it is critical that every organization have an enterprise data integration

architecture and management capability, for attempting to manage interfaces

without it can quickly become overwhelmingly complex.

Why two sets of technologies?
Is it necessary for an organization to have both batch and real-time data integra-

tion tools? Why not just have the one set of tools that can handle real-time inte-

gration and then use the same toolset and engine to load the batched data on the

necessary schedule? Why pay for two sets of technology licenses and two sets of

experts to code the transformations and support the interfaces?

The first reason for keeping the batch integration capability after creating a

real-time data integration capability is that the existing batch interfaces are writ-

ten, tested, and in production. Moving the interfaces to another technology would

be a substantial cost in time and resources. Change might be cost justified in not

having to maintain licenses on two sets of technologies and pay for two sets of

technical experts.

It turns out, however, that the ultimate reason for needing to maintain two sets

of technologies for both batch and real-time data integration is that usually the

speed at which real-time data integration works is insufficient to process the

volumes of transactions in a normal batch data interface window available for

loading a data warehouse or even to complete a data conversion in the available

time period. Real-time data integration is inherently slower because for each piece

of information being moved, all the layers of security access need to be invoked

and accessed through the application programming interface (API). Changing a

data warehouse architecture to load data as data in the source system is changed,

rather than daily or weekly, would probably alleviate some of the time pressure,

but snapshots of data taken at a particular time (such as end of day) may still be

too much volume for a real-time interface to process in the available batch

window.

Therefore, most organizations implement the tools for both batch data integra-

tion and real-time data integration and use the appropriate tools for the appropri-

ate task. The batch data integration tools are usually owned by the data

warehouse applications and are used for any data conversions when it becomes

appropriate.
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Interaction patterns
Although the area of data integration is seen as purely technical, the most signifi-

cant best practices are not about technologies but designs and patterns of integra-

tion. Certain techniques for managing data in motion have been developed to

lessen complexity and allow for change and scalability. These are not technolo-

gies but approaches to orchestrating the movement of data that, though possibly

not intuitive, provide significant advantages over traditional interface develop-

ment techniques.

Loose coupling
In designing interactions between applications and organizations, one best

practice is to design the connection to be as “loose” as possible. What this implies

is that a failure of one system doesn’t necessarily mean that both systems fail,

and that either system could be replaced without the need to change the remaining

system. Traditional real-time interfaces between systems tended to “tightly

couple” the systems together, especially in that the code of the interface was
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specific for the connection between only those two systems, and replacing either

usually required rewriting the interface.

Designing loose coupling between systems usually requires the clear definition of

an API (application programming interface) for at least one side of the interaction.

The API defines exactly how information should be formatted to request a function

of that application: to provide information, to store information, or to perform some

other operations. This is the equivalent of calling a program procedure or a function.

If the APIs of the applications are well defined, then it should be possible to replace

either side of the interaction without the need to recode the other side. The emphasis

here is that a well-defined interaction process exists but it is not necessary to know

anything specific about the technology in which it is implemented.

Loosely coupled interactions tend to be “near real time” rather than real time

in that it should be possible for one of the applications to be, at least briefly,

unavailable, without both applications being unavailable. Therefore, interactions

should be designed not to wait for one another. This is not always possible if an

application needs information from another application to proceed or the opera-

tion to be performed is a dependency.

Hub and spoke
The most significant and most important design pattern for architecting real-time

data integration solutions is the “hub-and-spoke” design for data interactions.

This pattern should be used in order to implement real-time data integration for

an organization of even medium size; otherwise the interfaces become overly

complex and unmanageable.

Traditional interface designs use a “point to point” interface whereby each

system directly interacts with each system with which it wants to share data. So,

between any two systems that need to share data, at least one interface is designed

and built where data from one system is transformed and passed to the other sys-

tem. This type of interface design is illustrated in Figure 12.1, showing just five

applications in the portfolio. The data transformation, as well as the orchestration

of when and how the data is passed, must be specified, and then the programs can

be written on both sides. If there are two systems that need to share data, then

only one interface needs to be written. If there are four systems that all need to

share data, then six interfaces between them are needed. The formula for the num-

ber of interfaces developed point to point, if the number of systems involved is

equal to “n” is (n � (n �1))/2. Thus, if an organization has 10 systems that need

to share data, the number of interfaces needed is (10 � (10�1))/25 45. If there

are 100 systems, then the number of interfaces is (100 � (100�1))/25 4950.

This formula is an estimate, since not every system in an organization needs

to interface with every other. Usually, however, there needs to be more than one

interface between any two systems with different kinds of data to be shared. The
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formula is exponential in nature and the number of interfaces quickly becomes

unreasonable. Even medium-sized companies usually have more than 100 sys-

tems. The number of interfaces needed for interactions with 1000 systems is

almost half a million. Every time a new application is added to the portfolio,

interfaces need to be developed to “n” other systems—all the already existing sys-

tems in the organization. Figure 12.2 shows the exponential growth in the number

of interfaces against the number of applications in an organization’s portfolio

using point-to-point interfaces.

It is no wonder that most of the complexity in managing a portfolio of appli-

cations arises from maintaining the interfaces. As mentioned earlier, the current

process of including purchased vendor packages in the application portfolio when-

ever possible only exacerbates the problem, since every package uses its own set

of tables or files that must be kept in synch with those of the rest of the

organization.

Modern techniques of data architecture use the creation of central data for

master data management, business intelligence, and data warehousing to clarify

what the proper source is for particular purposes, but these are not the hubs

referred to in “hub and spoke.” The data integration technique of hub and spoke

is most effective if used for every real-time interaction, but need not replace every

existing production interface to help bring the massive complexity of interfaces

back to a manageable level. The formula for the number of interfaces needed for

“n” systems using the hub-and-spoke model is just “n.” Every time a new applica-

tion is added to the portfolio, only one interface needs to be developed from the

new system to the “hub.” This technique can potentially change the number

of interfaces that an organization needs to manage from an unmanageable

FIGURE 12.1

Exponential Number of Interactions with Point to Point Interfaces.
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exponential number to a much more reasonable linear number. The hub-and-spoke

approach to managing interfaces is the most significant process improvement

technique and best practice for application portfolio management efficiency.

Figure 12.3 depicts how fewer and how much simpler are the interfaces needed

for a portfolio of five applications using the hub-and-spoke design approach for

interfaces. As shown in Figure 12.2, the number of interfaces using a hub-and-

spoke architecture will be linear, equal to the number of applications.

The data interaction “hub” is a technology solution data structure that business

users may not be aware of, even if such a structure is running in their organiza-

tion. The layout of the organization’s data is maintained in the hub, but not a

repository of data. In other words, all data passing between systems needs to be

transformed into the format defined in the hub, but the data is not stored in the

hub. In actuality, the transformed data doesn’t really go to a central place but is

just transformed into a shared format. The format of data in the hub needs to be

well thought out and designed to support all the interfaces of data in the organiza-

tion. The design of the data format in the data hub is usually called a canonical

model, because the design of the data hub needs to be the definitive design of the

data passed between applications, or the “canon”.

FIGURE 12.2

Growth in Number of Interfaces.
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Synchronous and asynchronous interaction
Synchronous interactions are those in which one system sends a message to

another and waits for an acknowledgment or response before it proceeds. This

type of interaction is common where the first requesting system needs something

from the second in order to continue the process, such as further detail on master

data or a preference. Clearly, this is a tightly coupled interaction, and both sys-

tems must be operational and online in order for the process to be successful.

Asynchronous interactions are those in which the requesting system doesn’t

wait for an answer to proceed, but continues processing, and doesn’t require

information back from the second system. Asynchronous interactions may be

requesting some action be taken and no response sent back, or a response may be

expected eventually and may even assume a response fairly quickly, in fact, but

does not sit and wait for it.

Request and reply
A standard interaction model is the request and reply model whereby one system

sends a message to another and expects a response back with either the informa-

tion requested or an acknowledgment that the request was received and the

service requested was completed. This interaction may be either synchronous or

asynchronous, and it may be direct or through a hub. Figure 12.4 depicts the

simple steps of a request and reply interaction.

FIGURE 12.3

Linear Number of Interactions with Hub and Spoke Interface Design.
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Publish and subscribe
Another standard interaction model is the publish and subscribe model.

Application systems declare their interest in a type or piece of information by

“subscribing” to the information in question. Systems that produce or acquire the

information of interest will send any new or revised information out to those sys-

tems that have previously declared their interest, or “publish” the information to

the network of interested systems. Tracking the subscriptions and determining

whether the subscribing system has access rights to the particular piece of infor-

mation may be handled by the publishing system or a separate orchestration sys-

tem that manages the data interactions.

Two-phase commit
A single business transaction may require updates to be made by multiple applica-

tions. It may be critical that either all updates are performed or none, but in no

case should only some of the updates be performed, even if some of the applica-

tions should fail to complete their assignments. An example would be a bank sav-

ings account update: If a deposit comes in, then both the transaction should be

logged and the account balance should be updated, but under no circumstances

should one activity take place without the other, even if a disaster occurs (such as

a power outage).

As shown in Figure 12.5, the two-phase commit transaction involves confirming

first that all of the applications involved are prepared to perform their respective

updates and second that all of the applications performed them successfully. If any

of the applications involved fails to acknowledge that they performed their part of

FIGURE 12.4

Request and Reply Interaction.
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the transaction, then all the other applications are instructed to undo, or back out,

any of the updates they had made.

Integrating interaction types
It is sometimes necessary to build interactions between systems which have dif-

ferent inherent interaction models. In order to build an interface between a pub-

lish and subscribe system and a request and reply system, it may be necessary to

create a somewhat complex store and forward solution that stores all the updates

made by a publishing system until a request is made for a particular piece of

information. Since this is actually creating another copy of the source system or

master file, it is probably more efficient to ensure that master data hubs can inter-

act using both the publish and subscribe and the request and reply interaction

methods.
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Confusing terminology
Even some experts in the area of data management use various real-time data

integration terminology interchangeably, although these concepts have distinct

meanings. Therefore, it is not surprising that those who are not experts find the

various shades of meaning somewhat confusing.

In summary, enterprise application integration (EAI) is an approach to inte-

grating or passing data between applications of various technologies, whereas

service-oriented architecture (SOA) is an interaction approach for applications

that are using a common technical protocol for interfacing or calling to one

another. An enterprise service bus (ESB) is the tool most commonly used for

EAI. Since most organizations want to integrate at least a few of their legacy

applications that use different technology than their newer applications which are

usually written using SOA, plus purchased application packages using whatever

technology in which they happen to be implemented, most organizations use an

ESB for real-time data integration and orchestration. Enterprise information inte-

gration (EII) is sometimes used as a synonym for EAI, but it specifically refers to

cases where the data underlying an application is being accessed directly for inte-

gration rather than access through the application code and services.
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Enterprise service bus (ESB)
Central to most real-time data integration solutions, and especially “hub and

spoke” solutions, is the implementation of an enterprise service bus. An ESB is

an application that usually runs on a separate server from any of the other appli-

cations and tools in the organization’s portfolio of business applications. Almost

all enterprise, operational, real-time, or near real-time data integration solutions

use an enterprise service bus. In other words, most data interfaces that happen

while the application systems are up and running and supporting daily work are

usually implemented using an ESB. Data interfaces focused on getting informa-

tion to a central hub at the end of daily work, such as a data warehouse, point to

point model may use other methods for data integration, such as a batch data inte-

gration solution.

An enterprise service bus is used to coordinate the movement of data mes-

sages across different servers that may be running different technologies.

Figure 13.1 depicts an ESB configuration. Each server (physical or virtual) being

connected by the ESB will have an adapter installed on that server and incoming

and outgoing message queues for each application. The adapter will handle any

transformations that need to occur because of different technologies that are

involved in the interface. Therefore, the adapters are specific for the operating

system and data structure technologies running on their respective servers.

The enterprise service bus will continuously “poll” every outgoing message

queue for each application connected, process any messages found, and put mes-

sages on the incoming message queue for any relevant application. If a server is

not available, or “down,” then the ESB will hold any messages for that server

until it is available. If the server is available but an application on the server is

FIGURE 13.1

Enterprise Service Bus.
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down, then the messages for that application will sit on the application message

queue until the application is back up and picks up the messages.

The implementation of an ESB will usually also include the logical implemen-

tation of a hub and spoke interaction model. The application that implements the

hub and spoke and transforms any data into the common format (or canonical

model) of the hub and then to the specific format of the receiving systems may be

co-located with the ESB engine or may be a separate application. Similarly, the

software to orchestrate the interactions between the applications may be indepen-

dent or together with the other coordination components of the ESB. The orches-

tration software will handle subscriptions by applications showing interest in

particular types of information and the subsequent distribution of the relevant

information when it is published. The ESB will also need to have a monitoring

application for use by a systems administrator to view and manage the data move-

ment of the ESB. Enterprise Service Buses are generally classified as “middle-

ware” as they support the application software across operating systems.

INTERVIEW WITH AN EXPERT: DAVID S. LINTHICUM ON ESB AND
DATA INTEGRATION
Following is an interview with David S. Linthicum on the importance and use of ESBs in
data integration.

David (Dave) S. Linthicum is the Chief Technology Officer and founder of Blue Mountain
Labs. He is an internationally recognized industry expert and thought leader, and the author
and coauthor of 13 books on computing, including the best-selling Enterprise Application
Integration (Addison-Wesley). He serves as keynote speaker at many leading technology
conferences on cloud computing, SOA, enterprise application integration, and enterprise
architecture, and has appeared on a number of television and radio shows as a computing
expert. His latest book is Cloud Computing and SOA Convergence in Your Enterprise, a
Step-by-Step Approach.”

What is an Enterprise Service Bus (ESB)?
An enterprise service bus (ESB) is a type of software used for designing and implementing
the interaction and communication between applications in real time. Its primary use is in
enterprise application integration (EAI) of heterogeneous and complex architectures.

What are the Capabilities that an ESB Needs to Provide for Data Integration?
ESBs provide the ability to consume data from source data storage, process that data in
flight, such as transformation and semantic mediations, and then place the data in the
target data storage. While not typically suited for ETL-type operations, the ESB provides
event-driven data integration that may occur in and between several heterogeneous systems
and databases. This is an evolution of the message brokers, created in the 1990s, which
provide similar features.

What kind of metadata does an ESB require/keep regarding data movement and
transformation?
It largely depends on the ESB, but typically they store:

• Data structure
• Data semantics
• Data constraints
• Data service information
• Data ownership
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• Data security information
• Data governance information

What is Involved in an ESB Configuration (What has to be done, What Kind
of Resources (Skills) are Required)?
Again, it depends on the ESB. However, general activities should include:

• Understanding the source, and the target systems, including data semantics, data
structure, and mechanisms for connectivity.

• Designing the flows between source and target systems.
• Designing the transformations of the data as it flows from source to target.
• Defining service governance and other controls that should be placed on the data at rest
and in flight.

• Testing the integration to determine the system’s ability to meet the requirements.

What is the Effort (Activities, Resources, Skills) Needed to Operate an ESB in
Production?
You need somebody who understands all sources and targets, all flows, all connections and
adapters, the ESB software, and how to deal with errors and exceptions.

Have you Had Experiences in Which the ESB Operation was Neglected
(Underresourced)?
Most of the failures I’ve seen don’t really involve lack of planning and architecture. Rather,
failure occurs when an attempt is made to leverage an ESB inappropriately, perhaps
because the vendors have been promoting the product as “SOA in a box”. Thus, when the
vendors get the technology implemented, they seek to use it as a services broker. ESBs are
more about information integration, while typically dealing with services as mechanisms to
push and pull data off of the ESB; that does not make it an SOA.

Is Data Integration different for Structured and Unstructured Data? Does an ESB
Operation Work for Structured and Unstructured Data? Are there Different Tools?
In order for ESB to work with unstructured data, the data must be placed into some kind of
structure that the ESB can handle. However, a few tools are beginning to support
unstructured data as a native format as big data becomes more of a driving force. I suspect
that most ESBs will morph around the ability to process unstructured data moving forward.

How do you Think ESB Tools are Changing? In What Direction do you Think this Area
is Headed?
As mentioned above, ESB tools are morphing around the integration requirements of big
data systems, including the ability to deal with both structured and unstructured data, as
well as large volumes of data and higher transfer rates. Of course, the interest in cloud
computing means that more of them will be localized for more popular public and private
clouds, as well as some ESBs provided as a service out of a cloud.

Service-oriented architecture (SOA)
Service-oriented architecture is a design principle in which software is designed

and built in pieces that provide well-defined services when requested. The ser-

vices may involve performing some activity or returning some information or

answer. Most current custom software development is designed and programmed

using SOA. Vendor packages that can be purchased usually also provide the capa-

bility to interact as services that can be invoked through an API . Service-oriented

architecture is particularly relevant in integration because the well-defined nature
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of the services directs the various systems and technologies on the protocol for

interactions. SOA best practice principles include a loose coupling of services,

such that the particular technology used in implementations of the various ser-

vices should not be of interest to users or applications trying to invoke those ser-

vices, but simply the result. Data services in SOA are those that either provide or

update information.

The differences between an ESB and an SOA are first that an ESB is a tool or

engine whereas SOA is a design philosophy, and second, that ESB is usually used

in a heterogeneous application environment of differing technologies that want to

pass data around, whereas SOA implies a more heterogeneous technology envi-

ronment. An ESB might be connecting some applications that have been written

as services, but usually includes applications that have not been written consis-

tently and so the ESB provides the needed layers of technical translation and

transformation. If all applications that need to interact have been developed using

consistent standards and protocols, then an ESB might be unnecessary, but it still

provides the orchestration necessary for the interactions. In the real world of inte-

grating new applications with older legacy applications, an ESB is needed.

Coding the overhead of orchestration of the interactions of the application into

the code of the application software would be a great burden that is easier to

offload onto the specialized ESB technology, just as we offload the overhead of

data storage to a database management system.

A bit of tension exists between efficient real-time data integration solutions

and pure service-oriented architecture. Software designers and application archi-

tects may want to implement all things in an application as services, in order to

stay true to the design principles of SOA. However, in most applications it may

be more efficient for the application programmers to understand how the data is

actually being accessed, such as through an ESB or a database management sys-

tem (DBMS), and designed and coded according to the efficiencies of the under-

lying data solutions. This issue can be contentious. Much of the functionality of

the service layer, or code, around a data service, such as security access checking,

may be redundant, duplicating the services performed by the underlying database

management software. Solutions coded to retrieve or update data that don’t take

into account the underlying solution may be so slow as to be unworkable, with

unacceptable delay in response, or latency.

Improvements in solutions and technologies have started to make the need to

understand the underlying implementation of data services somewhat less neces-

sary. See the discussion of data virtualization in Chapter 20 later in this book.

Achieving balance of data integration solutions and SOA working together

depends on finding the right balance in granularity when defining services. For

operational efficiency, it is not a good idea to define data services of too fine

granularity; it is better to define application services that perform recognizable

business functions. Again, this may contrast with some SOA design principles,

but in practice it may be necessary to loosen some pure theory in order to achieve

better performance efficiency.
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Service-oriented architectures include a registry of available services and how

they are invoked. Although originally the protocol used with SOA was SOAP

(simple object access protocol), it has become common to use alternative proto-

cols such as REST (REpresentational State Transfer).

Extensible markup language (XML)
The more removed things are that need to interact, such as organizations, applica-

tions, or services, the more necessary it is that the interaction method is flexible

and well defined. Most service interactions are defined to use XML (extensible

markup language) as the data interchange format to pass information. Use of XML

is not a requirement, and there are some performance inefficiencies involved in

parsing XML, but XML has been the de facto standard for message interactions for

the last decade. It is a useful approach to defining interactions because it is read-

able by both humans and machines and each piece of data or content being passed

includes a description of what that data is, as a “markup” or “tag.” Therefore, all

data in the XML format is accompanied by at least a brief explanation of what the

data means. Data interchanges using XML don’t have to have a predetermined

agreement in regard to the format of the data since this metadata can accompany

the data contents. Since it is a textural data format, it is very useful for managing

documents as well as messages and interactions. Other self-documenting data

interchange formats that are popular include JSON (Java Script Object Notation).

Just because an interface is said to be in XML does not indicate more than a

basic technology choice. It certainly does not indicate what type of data can be

found in the XML. It is like saying that software is written using a certain pro-

gramming language. In fact, there are many languages based on XML syntax.

XML may be presented in a predefined format, following a DTD (document

type definition), or it may contain information in an unexpected format but fol-

lowing the rules of a “well-formed” XML document. Interactions with an SOA

service would need to follow an expected format or schema as defined by the

service.

INTERVIEW WITH AN EXPERT: M. DAVID ALLEN ON XML AND DATA
INTEGRATION
Following is an interview with M. David Allen on the importance and use of XML in data
integration.

M. David Allen has been working on data integration for about 13 years, focused mostly
on the use of XML. He is co-author of XML in Data Management published by Morgan
Kaufmann and has written a number of articles on aspects of XML schema development and
the use of XML messaging formats in data interoperability solutions.

What is XML?
XML is a markup language. It is a set of rules that specify how to encode data in a way that
is easily readable by software. XML is not just one format for data, but it contains ways of
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building as many different formats as a user might need. Most of the time, when people
refer to XML they are actually talking about a particular vocabulary or data model built using
XML technologies, but XML itself is extremely general and flexible. What is common to all
applications of XML is that they all use elements, attributes, and content to create
documents.

How is XML Used in Data Integration?
When asking about how XML is related to data integration and how it is used, we need to
look at the big picture of XML, which can refer to many different families of technologies.
They are all used across the gamut of data integration. XML databases store instance
documents; extraction tools pull data out of non-XML databases and format them as XML
messages; enterprise service buses can inspect XML messages and route them based on
their contents; XML describes the bits and bytes of what often crosses the wire in an
integration; software written in XML (i.e., XSLT) can change the form of the data as it
moves; and other tools provide native interfaces between XML documents and legacy
software. While most integration challenges won’t use XML everywhere, XML solutions are
present and in use for just about every sub-niche of data integration.

Why is XML Particularly Useful for Data Integration?
XML is useful because it is well-suited to both structured and unstructured information
(flexible). XML also represents an open standard that helps prevent lock-in to any particular
proprietary technology. That was one of its original strengths when it came out, and while
that advantage is no longer unique, it is still valuable. It integrates well with many other
widely adopted lower-level technical standards (URIs, URLs, Unicode). XML has a very
mature technology and tool base, and it has a wide variety of technical practitioners in the
job market who are familiar with it. It came along at a time when computing was just
breaking away from proprietary standards, and this “early mover” advantage means that
many tools which don’t even process XML will at least have some functionality to export
their data as XML.

Have you Seen any Data Integration Projects Where XML Issues Led to Significant
Problems? Or Where Insufficient Focus was put on XML Issues?
Yes. Often the problems with XML stem from naı̈ve mappings to and from XML. Simply put,
XML is a document-oriented, hierarchical data format. What people are moving in and out of
XML though typically isn’t, and the mapping may be problematic. For example, I’ve seen
projects attempt to replicate a relational model inside of XML, resulting in XML schema
layouts that were much too large to be feasible. I’ve also seen projects miss the point of the
structure that XML can offer, ending up packing complex text records inside of a single
element attribute, that later needed to be parsed out with specialized software. Just like
anything else that requires a data model, there are many pitfalls possible surrounding
efforts made in the modeling stage.

Have you Had Experiences Where Particular Attention was paid to the XML for Data
Integration?
Generally, XML does not get the attention; most of the attention goes to the business need,
the budgeting realities, and the technical choices that have to be made to minimize the
impact on legacy systems. XML, then, is just one of many technical approaches used to
create a business effect in a much larger context. Some might even argue that the best
integration solutions are those that work so well that users do not even need to know or care
whether XML was involved.

Even within technical teams, XML only infrequently gets the attention. Technical teams
are often composed of those who really understand the underlying systems (whether they
are oracle databases, document repositories, or whatever else) or who really understand the
available tools (ETL, mapping, and so on). Much of the time, they’ll have background
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knowledge of XML, but the focus will be not on the XML, but on the underlying data store,
the tool, or the design approach.

What Kinds of Tools or Technologies are Used to Support Data Integration and XML?
A host of data-mapping tools are available which generally focus on describing
correspondences between one model and another, and on generating transform code. There
are a great number of modeling tools that permit the creation of high-level models in
language like UML, which can be “forward engineered” into XML models. Many ETL tools
will have options for extracting or transforming data through XML.

Some databases store nothing but XML documents (MarkLogic, eXist, Sedna). These are
often used as native stores in the case of unstructured information integration, and they
may be used as a staging area, or as part of a processing pipeline for a larger application
that needs to work with XML.

At lower layers of application development, there are absolutely critical tools that
perform Object/XML mapping (XML Beans, JAXB), permitting developers to serialize and de-
serialize XML documents into a series of in-memory objects in Java or C#. This class of
tools also includes database to XML mapping packages, which can expose the contents of a
relational database directly as XML documents.

One way to summarize this information would be as follows: XML is so ubiquitous that
for just about any other technology (programming language, relational database, modeling
language, etc.) there is a tool available that specializes in mapping from that technology to
XML documents and back again. All of them are used to support data integration efforts in
different niches.

How is Data Integration XML for Structured Data Different From Data Integration XML
for Unstructured Data? Is the Data Integration Different?
The integration approaches are very different. Integration of highly structured data can often
take advantage of approaches that exploit the details of the data model. Unstructured data
by its nature usually doesn’t have as much of (or any) formal model describing its contents,
which calls for a different set of techniques for integration, and also certain limitations on
the uses you can expect to get out of the data.

How do you Think the Area of XML and Data Integration is Changing? Where do you
Think this Area is Headed?
The area is changing quite a bit. Several kinds of changes affect XML and data integration,
which I’d like to discuss individually.

• Overall integration architecture (EAI and EII versus SOAP versus RESTful architecture)
• How to manage the heterogeneity of formats and models: Should we have one standard?
• How applications are developed (software development methodology)
• How data is processed and stored (big data, map/reduce, etc.)

When XML was first created, the focus of integration architecture appeared to be on
heavyweight EAI and EII approaches. As time passed and service-oriented architecture
began to get the lion’s share of attention, large stacks of XML technologies (the Web
services architecture stack) were developed to support that approach, including Simple
Object Access Protocol (SOAP), Web Services Description Language (WSDL), Universal
Description Discovery and Integration (UDDI), and so on. Today mainstream development
focuses on RESTful architecture (Representational State Transfer) at least as much (if not
more) than SOA. The design approach behind RESTful services has built into it the notion
that resources may have multiple representations—in JSON, XML, and other formats as
well. So in roughly 15 years of XML, we’ve gone through three major architecture shifts, and
I wouldn’t put my money on RESTful architecture being the last one!
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A good amount of data integration work has focused on trying to get data into one single
XML format that everyone would agree upon. The spoke-and-hub diagram is often shown to
describe the benefit of this approach; instead of having many data formats and an order of
n-squared translation problem, the spoke-and-hub design with a single XML format requires
only n translations, which is the best possible case. While a single message format is
optimal, in many cases it may not be practical, either because all of the stakeholders
cannot agree on any one format, or because their uses for the data differ too much. One
change I think we’re seeing now is a move toward a more pragmatic compromise. Indeed, if
there are 15 different formats, the translation burden is too high. But the name of the game
is not necessarily to eliminate all of this heterogeneity, but to get it down to a manageable
amount. Many modern RESTful services support both XML and JSON, and sometimes a
third format. Supporting 3 formats isn’t ideal, but it is much better than supporting 10, and
may be much easier than getting an entire community of users and developers with very
different needs to agree on just one.

So what’s changing? Using more than one approach for integration at the same time
seems to be gaining acceptance as a good engineering practice to balance trade-offs. In the
past, it was often seen as a failure to implement a proper hub-and-spoke approach. In my
view, this is a very good development and a move towars pragmatic design, since the
number of systems and the complexity of integration problems are only increasing with
time.

Another thing that’s changing a lot is the application development ecosystem. There’s
much more focus on agile development methodologies and their offshoots, as well as on big
data and nontraditional data stores that aren’t relational under the covers. Changes to
application development methodologies matter a great deal for data integration work
because they impact not only how the applications we’re trying to integrate are built, but
how the integration solutions themselves are built. Two of the key correct assumptions
behind these new approaches are that you cannot know all of the requirements ahead of
time and that systems should be flexible enough to permit constant change and adaptation.

Big data databases are focusing on different data structures such as direct graphs, JSON
documents, and key/value stores. New processing methods such as map/reduce have come
along with big data approaches. This all constitutes a lot of change for data integration,
because creating the big data stores in themselves is often an integration exercise, and
because today’s NoSQL database is tomorrow’s data integration headache!

When Would the Use of JSON be More Appropriate or Preferred to XML?
JSON’s strengths shine when the data sent needs to change rapidly, or when the data format
needs to support Web application developments that have a heavy javascript component.
Because JSON is generally schema-less, it works very well for rapid prototyping, when the
format of the message may change several times per week as an application begins to take
shape. This is in contrast to most XML approaches, which would require maintenance of the
XML schema, and possibly other software artifacts as well. Many Web applications
nowadays will opt to make their data available as JSON because they expect that user
applications written in a mixture of HTML5, CSS, and JavaScript will need to take
advantage of the data, and JSON is the friendliest possible format for javascript
programmers.

Data replication and change data capture
The original purpose of data replication was to enable two data stores to be kept

in synch with one another, with a minimal amount of information required to be
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passed between them as well as a minimal amount of impact on the source appli-

cation. Data replication was used frequently because of the tremendous latency,

or time delay, involved in data being accessed or updated across long distances.

If an organization had a data set that they wanted to use around the world, for

example, it was more efficient to keep multiple copies of the data close to each of

the places where it needed to be updated or used and then keep the data synchro-

nized using data replication. The downside was having the multiple copies and

having to pay for the disk storage each required.

Data replication, or change data capture, is usually a capability offered by a

database management system or other data storage solution. Rather than send cop-

ies of the data structures changed between instances of the replicated data, data

replication usually sends copies of the data structure change log entries. Since log

entries are usually very small compared to the entire data structure, sending log

entries is smaller and faster. Also, data replication minimizes the impact on the

applications: The monitoring of changes is done on the log and not on the data

used by the application.

Change data capture (see Figure 13.2) is a very effective way of allowing data

to be used across remote locations; it was very necessary at a time when wide

area network access was very, very slow. Now, emerging technologies are finding

this to be an effective way of solving many other latency and impact issues.

Because the source data structure itself is not accessed, the impact on the source

system is minimal and it is useful in cases where the response time of the source

system can’t be affected.
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Change Data Capture.
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Enterprise application integration (EAI)
Enterprise application integration (EAI) is a type of data integration architecture

or approach. Its subject covers all the techniques of integrating applications of

various technologies, including the hub and spoke approach, using ESBs, and var-

ious interaction patterns such as publish and subscribe. The point of enterprise

application integration is to connect applications in the portfolio that were devel-

oped and implemented at differing times and using differing technologies, thus

integrating heterogeneous applications.

The best practice in data integration is to interact through the applications and

let the application code handle access to the underlying data structures. Even if

an application does not have a predefined set of services or APIs, it is still best to

try to build a wrapper that invokes the application code to access the data or data

function needed. Many vendor packages are quite insistent that interfaces should

not bypass the application code, and it is best not to, especially for any update to

the data stores underlying an application.

Enterprise information integration (EII)
In the unfortunate event that the application code to access the needed data cannot

be invoked but must be bypassed, then it may be necessary to access the applica-

tion data structures directly.

A data integration interface directly to the data structures underlying a legacy

application bypasses the application code because the code needed to access the

data structures is not accessible. As shown in Figure 13.3, a small amount of code

FIGURE 13.3

Accessing a Data Structure Directly in Enterprise Information Integration.
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needs to be written to bypass the application and access the data directly. The

data integration code to access the legacy data structures would be written using

the standard application development tools, the standard data integration tools,

the legacy data structure tools, or an appropriate combination. For example, if the

application where customer data is produced is a legacy system with an underly-

ing relational database and the application doesn’t have an API or service defined,

code may be written in the database (bypassing the application). This code will

monitor for any updates and indicate that the customer information that was

updated be written onto the outgoing queue for the adapter running on that server

and be published to interested applications by the enterprise service bus.
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Canonical modeling
Creating a hub and spoke model for real-time system interoperability has signifi-

cant benefits, as it allows for an additional system to be placed in the portfolio

and integrated with the other systems simply by establishing interfaces from the

new system to only one other system: the “hub” or central system that interfaces

with all others. Using a hub and spoke architecture can significantly reduce the

complexity of the system interactions and interfaces that must be maintained from

an exponential number of interfaces to a linear number of interfaces. The addi-

tional investment needed to use a hub and spoke approach, however, is the

creation of one additional (possibly only virtual) system: The “hub” must be

added to the portfolio. The “hub” application of the portfolio will usually be part

of an enterprise service bus or a middleware component of a vendor package that

provides the required functionality. The hard part for an organization is not just

implementing the technology but defining a data model for the hub that can suffi-

ciently handle all the passing of data necessary between the applications: a canon-

ical model for the shared data of the organization. The canonical model for the

organization is not necessarily all the data of the organization, but all the data

that needs to be shared.

The word “canon” means a rule, but it has come to be used to mean, as in this

case, the unique distinguishing standard of something. A “canonical data model”

for an organization can mean the documentation of the important business terms

and items in that organization with definitions of each business term and the

relationships between the terms. In regards to data integration, it also means
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defining the data in the central hub of interoperability, which can be used for the

pass-through of all real-time interfaces in the organization. Data in the hub is not

persistent: The hub is virtual and refers to data that is in the process of being

translated to or from the format of one of the applications in the portfolio. So,

although there may be no data stored in the hub, the data model of the hub may

be extensive since it must incorporate all the data in the organization that is to be

shared between systems. The goal of this model is to provide a set of reusable

common objects at an enterprise or business-domain level to enhance system

interoperability.

INTERVIEW WITH AN EXPERT: DAGNA GAYTHORPE ON CANONICAL
MODELING AND DATA INTEGRATION
Dagna Gaythorpe has been involved in data modeling, architecture, and management for
20 years. She has performed the technical proofreading of two books: Data Modelling
Essentials, by Graeme Simsion and Graham Witt, published by Elsevier in 2005; and Data
Model Patterns—Metadata by David Hay, published by Elsevier in 2006. She is a regular
attendee and speaker at conferences in the United States and Europe, and is on the boards
of DAMA International and DAMA UK.

What is Canonical Modeling?
Canonical modeling is the basis of a spoke and hub approach to data mapping. There
are other approaches; the main one is point to point, which is far more time
consuming. The canonical approach uses a common central model and maps everything
to that, so that (assuming the mapping has been done correctly) it is possible to say
with certainty that field A in this system holds the same data as field B in that one
(although they have different names and formats). This speeds up the data-mapping
approach, as each field only has to be mapped once, to the canonical model. After
the first data set is mapped, the point to point mappings for each pair of systems
become part of the canonical metadata set, centered on the common canonical data
item.

If bespoke systems are being developed (so the database is being designed for the
purpose), then using the canonical model for the database design means that no
transformation of the data coming in or going out is needed. In my view, use of the
canonical model as the basis for all bespoke database design is an excellent strategic
approach. Over time it will reduce the amount of transformation that needs to be done, as
well as lessen the “what does this system mean by X?” sort of confusion that makes life
“interesting” for business and management information reporting.

How is Data Integration (i.e., Moving and Transforming Data) Related to Canonical
Modeling?
If the data being transferred is in a common format, then it only needs to be
transformed to or from that common format on its way out of, or into, each database. So
instead of a transformation routine for every source, the targets only need one routine,
from the canonical format—unless the target used the canonical data model for the
database design, in which case they don’t need to transform, just load. And each system
(that doesn’t use the canonical forms) does need to transform its data on the way out.

For most organizations, the move to a canonical approach may take years and will
happen as old applications are replaced or as a side-effect of other work. Thus, in reality
most systems will be doing some point-to-point transformations alongside the canonical
common ones. This is why I mentioned that it should be a strategic approach: It will take a
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lot of time (unless there is some big-bang transformation going on), but it will deliver more
and more benefits as that time passes and more systems “come into the fold.”

What Kind of Metadata is Kept Regarding Canonical Modeling and Data Integration?
In addition to the metadata specifying the canonical model and the mappings from the
source systems to target systems, I would also keep the cross references, recording where
each item (entity or attribute) in the canonical model appears in all the other mapped
systems; identifying the systems where it gets created (bonus points if there is only 1); and
for major entities holding some sort of life cycle, showing how it moves through the systems
and what they do to it and what they use it for, including where it gets sent outside the
organization, if it does.

At What Point in a Data Integration Project is a Canonical Model Created? Why? What
Activities are Involved in Developing a Canonical Model?
Creation of a canonical model begins as soon as you start looking at sources and targets.
Ideally, you start with the enterprise data model, if there is one. If there isn’t, then the
canonical data model can be the start of the enterprise model. If there is an enterprise
model, or a suitable logical model, then I start by mapping one system to that. This is
almost always in a spread sheet—which makes sorting and reviewing easier. If there is no
suitable model, then I have to build one, and map the other systems to it. If there is no
existing model, but an obvious core system exists, use that as the starting point.

How is Canonical Modeling Similar to or Different From Other Kinds of Modeling?
Is it Necessary to Create a Logical and Physical Version of a Canonical Model? Other
Versions?
Canonical modeling has a lot in common with enterprise and programming modeling. In all
of them, the model is describing the common vocabulary of the part of the enterprise being
modeled, and that vocabulary will be used by other people as the basis for what they do.
It is also likely that few, if any, of the “consumers” of these models will use the whole thing.
They are likely to use a subset of it, possibly most of it, but that few if any systems,
programs, or other developments will likely use the whole model. The main exceptions to
this are ERP systems and data warehouses (so if there is an ERP system or warehouse
connected to the area the canonical model is covering, that is a good place to start looking
for or developing the canonical model).

In general, I am in favor of keeping the modeling as simple as possible. This includes
minimizing the number of models. In my opinion, rarely does any one thing need more than
two models—one higher level (e.g., logical) and one detailed (e.g., physical). In the case of
canonical modeling, I favor a single model. It will probably start out logical, and gradually
get more physical as time passes and more of the rules and definitions are recorded. This
happens because the canonical model isn’t actually a model: It is (if it is working) a
repository/dictionary where things get translated and identified.

Have you Seen any Data Integration Projects Where Canonical Modeling Issues Led
to Significant Problems?
I have encountered instances where a large project ran into trouble because the various
groups working on it saw the canonical model as an academic exercise that was getting
in their way. As a result, they put a lot of effort into developing point-to-point interfaces,
and worked in their own silos, developing their own models, which was a huge waste of
effort.

Have you Had Experiences Where Particular Attention was Paid to Canonical
Modeling for Data Integration? How did that Work? What Was the Impact on the
Project Schedule?
Two instances come to mind. One was a data warehouse project involving taking and
merging data from a number (more than 10) of systems that all had the same basic
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function, but all handled it differently (even the two copies of the same package that
had been implemented). They had to merge the data and then pass a coherent version
on to another set of systems. In the second instance, the developers decided that they
were implementing SOA not as a program, but as the way they would do things in the
future. In both cases, the canonical model was used as the basis for all the data
transfers, ETL, and messaging—not as a “this is how you must do it” approach,
but as a “this is how we do it and if you want to do it any other way, please justify
the extra work and time you will take” approach. The canonical model was used as
a way of getting things done much faster than a piecemeal approach would have
allowed.

Have you Had Experiences Where Canonical Modeling was Neglected on a Data
Integration Project? What Happened? What was the Impact on the Project schedule?
I tend to sneak a canonical model into a data integration project as a matter of course.
I describe it as the standard layout, and people tend to accept it.

Is it Generally Accepted on Real-Time Data Integration Projects that a Canonical
Model is Needed? Why or Why Not?
I myself accept it, but I have encountered resistance from time to time, mostly from people
who want everyone else to do things the way their piece of the world does. Further, they
think that it is perfectly reasonable to expect everyone else to make the extra effort to
accommodate them. This is never a happy situation and can lead to annoyance among the
people who are expected to make the accommodation.

What Kinds of Tools or Technologies are Used to Support Canonical Modeling? Do
you think the Technologies for Canonical Modeling, Especially Around Data
Integration, are Changing?
Modeling tools are getting more sophisticated now and are integrating with each other more
than they did formerly. But there are still problems getting process and data models linked,
for example, and if an organization has more than one data-modeling tool, then canonical
modeling can become challenging, since those tools often don’t talk to each other. This is
one of the reasons that spreadsheets still seem to be the main tool and type of repository,
along with the ease of adding things to a spreadsheet. The term‘canonical model seems to
cover a whole range of ideas, from the messages used to exchange data to the core data
being exchanged The notation used varies widely, depending on what the people developing
the model are comfortable with. I think that as the idea of canonical modeling develops,
and as it settles down and matures, we will see it incorporated into data- and process-
modeling tools.

Are the Tools for Canonical Modeling Different for Structured and Unstructured Data?
They are different in the same way that the tools for modeling structured and unstructured
data are different—though I think it has more to do with the notations and methods used
than with the tools used to do them.

How do you Think the Area of Canonical Modeling is Changing? Where do you Think
this Area is Headed?
I think that canonical modeling will eventually stop being something we have to ask about,
and will start to be seen as one of the inputs into data design, in the same way that a
logical model is now. And I also think (and hope) that it will be done as part of the
enterprise information/data architecture function, and supplied to anyone who needs it,
alongside the common logical model, ideally, as part of (and an extension to) that logical
model.
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Message modeling
Modeling the layouts of the interfaces between systems or organizations is very

similar to but slightly different from modeling persistent data in a database. It

may save time and effort, depending on the modeler, to model in the language of

the interface technology and not just a logical representation. In other words, the

goal of the message model is to implement message layouts, not just a logical

model. Much time is spent these days transforming persistent data models from

object to relational presentations (or vice versa) because of the differences

between the programming language and the data structures in relational databases.

To avoid this, modeling messages should be done in a format or manner consis-

tent with the target implementation. This usually means using an XML or JSON

format or some format consistent with the enterprise service bus (ESB) or SOA

technology to be used.

Industry standard models are a very good starting point for an organization’s

message model because they usually deal with the common business objects for

the organization’s industry. Extensive numbers of industry models are currently

available, which have thousands of man-hours in developing and reviewing.

Electronic Data Interchange (EDI) is ubiquitous for retail industry interactions

between organizations and Society for Worldwide Interbank Financial

Telecommunication (SWIFT) for banking and financial securities interactions

between financial organizations. Most industries have standard industry models.

These industry models may only handle the types of transactions that would take

place between financial organizations and may have to be extended for interac-

tions necessary between applications within the same organization.
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Introduction to master data management
Master data management (MDM) is an architecture that has been developed for

managing the subset of data in the organization around important areas such as

customer, product, and organizational structure; information that we call master

data. These items frequently are the “keys” in the transactional data of the organi-

zation; for example, a product is sold to a customer and the revenue or costs are

attributed to an employee or a part of the sales organization. It is critically important

that the information about master data is correct because mistakes can become

greatly magnified when used in transactions. It is also of great importance that all

parts of the organization are working off the same version of master data.

Customers no longer find it acceptable to have to change their address or other infor-

mation multiple times with different parts of an organization just because different

computer systems happen to store the customer’s information in multiple places.

Reasons for a master data management solution
For most organizations, justifying an investment in the creation of a master data

hub requires only a simple analysis of the costs associated with previous
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inconsistencies and mistakes, since master data problems can mushroom into

huge issues in the transaction processing systems. We want to place particular

focus on the data quality of organization’s master data, and we want to have an

agreed upon single or consolidated source of master data that can be used by the

whole organization. Another straightforward justification for a master data solu-

tion is the cost of updating master data in multiple systems.

Data integration is critical to master data management to manage the consoli-

dation of data from multiple operational systems and sources, as well as to dis-

tribute the master data to the systems and groups that want to use it. Managing

the movement of data to and from the hub of master data is so crucial to the suc-

cess of MDM system implementations that master data management architects

sometimes describe the whole area of data integration as a part within the subject

of master data management.

Organizations usually implement MDM solutions for one or both of two rea-

sons: to provide a consolidated view of an organization’s master data for report-

ing purposes, or to provide a central source of master data for transaction

purposes. If all an organization is trying to do is consolidate master data together

from the transaction processing systems for reporting or for their data warehouse,

then the movement of the master data together to the master data hub might very

well be implemented using a nightly batching of updates from the transaction sys-

tems to the hub using a batch data movement solution. In the case of nightly

batch updates of master data, the consolidation of information might only be

occurring in the data warehouse, and so there may be no need for a separate mas-

ter data hub.

For organizations that are attempting to consolidate master data for real-time

use by transactional systems, a separate master data hub is usually created by

acquiring and implementing a vendor master data software solution. The vendor

solutions have a great deal of the functionality needed built in, including some-

times a starting data model and capabilities to link to many standard real-time

data movement solutions.

Purchased packages and master data
The challenge of managing master data is getting more difficult. When most

application systems in an organization were custom developed, there was usually

just one set of master data in the organization that would be used by all the appli-

cations. With the advent of purchased vendor applications to perform common

functions such as financial consolidation, customer relationship management

(CRM), and enterprise resource planning (ERP), each vendor application has its

own set of master data structures which have to be kept in synch with the custom

master data. Since buying application solutions is considered best practice where

possible over building application solutions, the problems of integrating master

106 CHAPTER 15 Master Data Management



data are ubiquitous for all organizations. ERP systems sometimes promote them-

selves by saying that all the functionality is integrated and there is only one set of

master data used across all the applications in the ERP. However, many organiza-

tions end up implementing multiple ERP applications or multiple instances of one

ERP. No organization can get away with implementing no additional systems

other than the ERP.

Reference data
Sometimes reference data is differentiated from master data. Reference data

usually refers to the standard sets of values that certain fields might be able to

contain, such as countries or other geographical options, statuses, or types.

Frequently, the source of definitive references data is external to the organization.

Providing one source of a particular type of reference data in an organization can

help avoid a lot of duplicate effort and prevent inconsistent results and reporting.

Differentiating reference data from other types of master data can become very

confusing. Certain aspects of an organization’s product data, for example, may be

sourced from an external organization and may be called either reference data or

product data. Both master data and reference data are used as key attributes in

operational transactional data and financial data. Although reference data is usu-

ally less changeable or dynamic than master data, certain forms of reference data

are dynamic and so require constant updating.

Uusually there is little to be gained in maintaining a strict separation between

master data and reference data. As with master data, each type of reference data

should have a person or group responsible for overseeing the management, update

and use of that data in the organization.

Masters and slaves
The architecture of a master data management solution is very similar to the hub

and spoke architecture used for managing the complexity of data interfaces. The

difference between the two is that a master data hub is instantiated, not just logi-

cal, whereas a data integration hub is simply a logical concept. Also, business

users may be aware of a master data hub, but may not be aware of the data inte-

gration communication “hub” in a hub and spoke architecture because in effect

all that happens is that the data gets transformed into a common intermediate

model or canonical model.

Figure 15.1 shows some applications, all of which are maintaining the same

kind of master data, such as product data, and need to share any updates between

them, plus the other reporting and transactional systems that need a consolidated

view of the master data. This kind of peer-to-peer sharing of updates is very
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difficult and complex to control, as well as having an exponential number of

interfaces to manage.

Figure 15.2 shows the configuration of applications where the master has been

identified for the particular data domain. Updates are only made in the master or

are all passed to the master, which then provides a consolidated view of that mas-

ter data domain to all applications that require it and have appropriate access. The

FIGURE 15.1

Integration Without a Master Involves an Exponential Number of Interactions.

FIGURE 15.2

Master Data Application Interaction Only Requires a Linear Number of Interactions.
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master data application may be different for each data domain, since the appro-

priate master for product data, for example, may be different than customer data.

Similarly, the applications that are getting master data updates may be different

for each domain.

The architecture for master data management does not necessarily require an

additional application to be implemented that will play the part of the master for

a domain of data, such as customer, product, or employee. The critical first step

may be to determine that an existing operational system holds the de facto master

of data for that domain, or the “system of record.” All other places where the

master data resides are designated as the “slaves,” and the ability to make updates

to the master data is disabled on the slave systems. The financial consolidation

and reporting application, for example, is usually considered to be the master for

clients who are billed, since it is necessary to report consolidated financials and

profitability by client. Depending on the business and application architecture,

many of the core master data domains may be effectively mastered in the

organization’s central enterprise resource planning (ERP) system.

In practice, however, assigning the role of master to an existing operational or

financial system is usually less than optimal. Financial systems are generally

focused on updates at the end of the financial period, such as monthly, quarterly,

or yearly, and the responsible system users are not concerned with making sure

the master data is updated in real time. Operational systems and ERPs focus on

customers ordering goods and services, and while they may make a very good

source for a master data hub, they usually have behavior and actual content that

makes playing the role of the master data application difficult. Frequently, not all

customers or all products are located in a single operational system, and adding

more items just for the sake of master data management is inconvenient for the

central users of the system. In addition, maintaining that data is not a high prior-

ity. Adding more information, functionality, or fields to either ERPs or custom

operational systems for the sake of master data management is usually a very low

priority, if even acceptable, to the central users and support groups around pro-

duction operational systems. For most organizations and for most types of master

data, the volume of master data is not a struggle to manage, especially in compar-

ison to transactional and event information. However, we usually want to main-

tain a full history of all the changes with master data, especially for auditing and

customer service, and operational systems only want to maintain current informa-

tion for use in transaction processing. In practice, therefore, it has been found that

creating a separate application in the existing application portfolio as the master

data hub is a best practice.

Sometimes a separate master data application covers each data domain.

Sometimes one application is created that supports multiple domains. Having one

cross-domain application seems to make the most sense initially, since this system

will have to possess many of the same interfaces for each of the mastered

domains, such as to the enterprise data warehouse. However, if different business

groups are the owners of the different domains of master data, they may find it
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more convenient to have separate applications that can be managed and controlled

independently by the business groups that are the central users and managers. A

federated solution by domain may provide more agility to the separate business

and application support teams, but will be more costly to operate because there

are separate support teams and little shared code.

Organizations usually start by implementing one key master data domain that

is particularly critical to their business and that justifies an investment in a master

data solution. Some organizations start with the customer domain or some aspect

of it, whereas other organizations find the product domain to be a natural starting

place. Many organizations find that starting by mastering their reference data pro-

vides a great deal of return and allows them to start or pilot in a “small” area.

External data
In many cases, some or all of the master data in a particular domain is acquired

from a source external to the organization, either free from a government or stan-

dard site or purchased. The organization needs to provide a location where the

external data is instantiated, reviewed, cleansed or reformatted, and made avail-

able to the entire organization. In certain businesses, external master data is so

critical that large organizations sometimes find they are purchasing the same data

multiple times for different business functions. Financial securities definitions and

prices are critical to businesses dealing with financial market data. Drug informa-

tion is critical to life sciences businesses. These are just a few examples of the

types of data acquired from external sources.

Master data management functionality
A key functionality that master data solutions need to provide is the capability to

identify when the same piece of master data is coming from multiple sources, or

multiple times from the same source. Among the potential duplicates it is deter-

mined, either automatically or manually, which one is the correct and most recent

version. The matching code can be very complex using “fuzzy logic” and identi-

fying different spellings or misspellings of names and addresses. The cross refer-

ence of identifiers from the various source and transaction systems that refer to

the same piece of master data is maintained for reporting consolidation and future

updates. Sometimes the master data hub is configured to send the best version or

any updates of the master data back to all the source and transaction systems that

need it, as well as to the reporting systems and data warehouse. If operational up-

to-date master data needs to be provided, it is necessary to have real-time data

transfer between the master data hub solution and the sources and transactions

systems that provide the operational master data.
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Although adding another application to the organization’s portfolio and fre-

quently being very expensive, vendor solutions usually provide tremendous bene-

fits to an organization’s ability to quickly implement a master data management

solution: They provide the matching and de-duplication code; integrate easily

with most standard real-time data integration solutions or easily provide a solu-

tion; provide a cross reference of identifiers used for the master data across the

organization; and even sometimes provide a potential canonical model for impor-

tant master data. Justifying the expense of purchasing an MDM solution is usually

quite easy to do.

Obviously, a master data hub is a data hub. Therefore, if an organization does

not already have a hub and spoke solution implemented for other data integration

reasons, it may not necessarily choose to do so just to implement the master data

hub but rather just implement real time, point to point integration for master data.

The master data solution plays the part of the hub (in hub and spoke architecture)

for the subset of data in the organization that is master data, thus simplifying the

potential complexity of application interfaces.

Types of master data management solutions—registry
and data hub
There are two flavors of master data management solutions in addition to whether

the solution is only for reporting or for use by operational systems. One flavor is

to provide a registry of master data information, or a cross reference of where the

master data is located and the various identifiers that refer to the same piece of

master data. Although a registry solution may still identify multiple places within

and across applications where the same piece of master data has been assigned

multiple references or identifiers, the registry doesn’t necessarily store all the

master data but rather just a pointer to where the master data is located.

The second flavor is to provide a data store where all the master data is copied

and maintained. The master data hub doesn’t just provide a cross reference to the

sources of master data but also supplies a copy of the data and is itself the system

of record for the master data. This type of master data hub is also said to provide

the “golden copy” or definitive best version of the data for the organization.

A primary difference is that with a central hub of master data, changes and

corrections to the master data are probably done to the data in the hub and are

automatically fed back to other systems. In contrast, changes to master data in the

registry model need to be made in the source systems where the master data actu-

ally resides.
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Corporate information factory
Bill Inmon defines a data warehouse as “a subject-oriented, integrated, time-variant,

nonvolatile collection of data in support of management’s decision-making process”

(Inmon, 1992). Data warehouses are usually populated periodically (daily, weekly,

or monthly) with updates and snapshots from the master data and transaction

processing applications in the organization. Figure 16.1 depicts the architecture of

a data warehouse and business intelligence solution that receives batch updates

periodically.

Operational data store
More current data may be needed for some operational reporting. To meet the

need for real-time or near real-time data, an additional data structure may be

added to the “corporate information factory” (Inmon, The Corporate Information

Factory, 1994) or data warehouse architecture: an operational data store (ODS)

that integrates real-time updates with master and transactional data for use by

operational reports. Since data movement into and out of a data warehouse is

usually done in a batch mode, in order to populate the ODS and provide real-

time data for reports, the architecture for the corporate information factory needs

a real-time data movement capability. Usually, another real-time data movement

capability is added, or an existing real-time data movement capability is
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leveraged. Unfortunately, the batch ETL metadata and transformation logic that

already exists for the data warehouse cannot usually be leveraged for the real-

time data movement metadata need, so the transformation has to be written for

the real-time data movement. Figure 16.1 depicts the architecture of a corporate

information factory including the addition of an operational data store (ODS).

FIGURE 16.1

Corporate Information Factory Architecture.
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FIGURE 16.2

Corporate Information Factory with ODS.

In some data warehouse architectures, the operational data store is fed from

the operational system’s real time, and then updates to the data warehouse struc-

ture are made on a periodic basis from the ODS. More frequently, however, the

batch updates to the data warehouse predate the creation of the ODS, and so it is

easier to add the ODS as another structure but not as a replacement as the source

of data to the data warehouse. Additionally, one problem with data warehouse

implementations is that projects tend to take so long to add more data sources to

the data warehouse and then to reports from the data warehouse. Adding another

step to the process of getting new data into reports, by making it necessary to

also add any additional sources into the ODS would just exacerbate that issue.
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Master data moving to the data warehouse
Master data in the data warehouse environment is usually maintained with

updates from the operational systems or master data environment rather than

snapshots of the entire set of data for each periodic update of the warehouse. If a

real-time update capability is added to the warehouse in support of maintaining

information in the ODS, then it is also possible and preferable to use that same

capability to maintain the master data in the warehouse real time. Changing mas-

ter data in the data warehouse on a different schedule than the transactional data

could change the results viewed in certain reports, depending on how the

reports are defined. The master data is usually used in reporting for sorting

and grouping the transactional data and is what is called the “dimensions”

(Kimball) of the data. Reports have to choose whether to group the transac-

tional data based on the state of the master data at the time of the transaction

or at the time the report is written. Different choices may be appropriate for

different reports. For example, for a report of sales, if a salesman moves to a

different territory, should the report show his historical sales in the new terri-

tory or the old? In calculating commissions, a report needs to show his histori-

cal sales under him wherever he works in the company, but in showing year

over year sales by territory a report needs to show sales under the historical

territory.

INTERVIEW WITH AN EXPERT: KRISH KRISHNAN ON REAL-TIME DATA
WAREHOUSING UPDATES

Following is a continuation of the interview with Krish Krishnan on the importance and use
of data integration in data warehousing. The following discussion is specifically focused on
real-time data integration.

Krish Krishnan has spent 12 years designing, architecting, and developing data
warehouse solutions, in the last five years focusing on unstructured data integration into the
data warehouse. He has been involved in some of the largest and most complex designs and
architecture of next-generation data warehouses. He is co-author of Building the
UnStructured Data Warehouse with Bill Inmon.

When is it Appropriate to Use Real-Time Data Integration with a Data Warehouse?
Do you think it is Worthwhile to have both Batch and Real-Time Data Integration
Solutions Working with a Data Warehouse?
Real time is a relative term that has been used in the data warehouse industry for a long
time. Real-time data integration is useful in financial services, health care, and sensor data
management in the current data layers in the data warehouse.

In today’s fast-paced data environment, the data processing techniques will involve
real-time, micro-batch, and batch processing. We can architect different techniques using
these combinations to effectively process data into the data warehouse. Remember that
metadata and master data management are key aspects of this mixed-integration
architecture.
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Are there Special issues Associated with Real-Time Data Integration and Data
Warehousing?
To manage real-time data integration in the data warehouse, we need the following
architecture layers

• Scalable storage
• Scalable processor and memory architecture
• Fast networks
• Flexible data architecture
• Robust reference data
• Metadata

What are the Considerations for Real-Time Update of Master Data in the Data
Warehouse?
Master data management consists of operational, analytical, and “gold copy” layers in the
architecture. In order to accommodate the real-time data integration requirements to
maintain master data, we need to expand the data processing across the three layers of the
master data set. By expanding the operational data architecture, the master data
architecture needs to support an object-driven model or an SOA model where the data sets
can be self-contained. This approach will provide the best scalable and distributed
architecture to manage MDM in real time.

What are the Considerations, Especially Around Data Integration, for Adding an
Operational Data Store to a Data Warehouse Configuration?
The ODS or operational data store is an optional layer for data integration in the data
warehouse. There are no data model or data type or data architecture changes when
comparing an ODS to the source database. In many cases, the ODS is a snapshot of the
source databases, and hence there is no specific data integration requirement. However,
if the ODS needs to accommodate more than one source database, the data model will need
to be modified to accommodate multiple tenants and integrate data in the ODS. Apart from
modifying the data model, the physical architecture of the database needs multiple partition
and indexing techniques to be implemented for scalability. Data quality is not a prime step
in the ODS, but master data and metadata integration is needed to create an
auditable environment. In the case of unstructured or big data, I advise that no ODS be
created or considered for any form of data processing of this type of data.
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What is real-time data integration metadata?
The metadata associated with real-time data integration is very much the same as

for batch data integration. We categorize metadata into three types: business,

technical, and operational.

The business metadata for real-time data integration includes the business

definitions for the data to be moved and integrated around and between organiza-

tions. Security access information, what data can be passed or seen by what appli-

cations and users, can be classified under business metadata, although there is a

large technical and operational aspect as well.

The technical metadata associated with real-time data integration includes the

logical and physical models and layout of the source data, target data, and inter-

mediate canonical model. It also includes the transformations and mappings

between the source, target, and intermediate models and physical implementa-

tions. The orchestration of behaviors, what data and changes to monitor and what

to do when a relevant event occurs, is technical metadata comparable to the batch

data interface schedules. The technical metadata provides “lineage” information

concerning the exact source for data on a screen, report, or field and how it was

transformed.
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The operational metadata generated from the execution of real-time data inte-

gration is very valuable to business users and technical users alike, as well as

auditors and regulators. The operational metadata provides “lineage” information

about when it was generated or changed. Operational metadata will also provide

information on who has changed and accessed data and when.

The technical components and tools that comprise a real time data integration

architecture are depicted in Figure 17.1. These are the pieces that are necessary to

develop and operate a real time data integration solution.

Modeling
Usually, it is necessary to use a tool to support the development of models needed

for real-time data integration, including individual point to point interface models,

common interaction or hub model, and data service models. Most tools used for

data modeling can be used for real-time data integration modeling as well,

although not all have the capability to generate the physical implementation-level

models needed, such as XML schemas or data service object classes. It will prob-

ably be necessary to reenter the model into the tool being used for the implemen-

tation: the ESB, the XML tool or database, and/or the object programming

environment. It may be possible to use the implementation tool for initial model-

ing, but usually modelers like to use some visualization capability while model-

ing, which is provided by the traditional data-modeling tools and the most

frequently used modeling tool: Visio.

In addition to data modeling, the data flows of the interactions are usually

modeled using some kind of process modeling tool.

Profiling
As with batch data integration, it is critical to the success of any data integration

development project to profile the actual production source and target data prior

to the beginning of the project. In this way, it becomes possible to understand

whether the potential data involved is of sufficient quality for the purpose

intended and whether the appropriate sources and targets have been identified.

The same tools and issues associated with batch data integration are appropriate.

Metadata repository
The tools for modeling, profiling, and transforming (the ESB) will have their own

metadata repositories, which may be sufficient for managing the relevant
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metadata for the development and operation of real-time data integration solu-

tions. As with batch data integration metadata, the organization may benefit sig-

nificantly from a consolidated metadata repository that links the metadata from

the various tools and engines and provides an enterprise view and audit trail of

the movement and transformation of data around the organization. Of course, a

consolidated metadata repository should include the metadata from both batch

and real time data integration solutions.

An enterprise metadata repository can become a core capability, providing

information to business users on where data in the organization can be found, its

relative quality, how it is appropriate to use the data, its history of update, and

its access. The ability to provide such an audit trail is also considered best practice,

and in many instances, a regulatory requirement.

Enterprise service bus—data transformation
and orchestration
The primary tool needed for implementing real-time data integration is an

enterprise service bus (ESB), which provides myriad functions necessary for

managing the real-time data interfaces in an organization. An ESB provides

technical mediation services as well as applying the business semantics

Monitor
applications

Integration
repositories

-
metadata

Orchestrator
applications

Enterprise service bus

Adapters for every server technology to be connected

Adapters 

Business content transformation

Technical transformation

FIGURE 17.1

Real-Time Data Integration Architecture.
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information that has been developed. Technically, the ESB provides or inte-

grates with the transport mechanisms of physically moving data between ser-

vers, orchestrating the sequence of events and interactions, the interaction and

translations needed between different technologies running on the different ser-

vers, and monitoring and error recovery. The ESB will integrate with the orga-

nization’s data security solution as well. The organization will have to specify

what data needs to move and when, and then those business decisions can be

configured into the ESB.

Technical mediation
In real-time data integration architecture there needs to be software that will han-

dle the technical issues surrounding managing the interactions and messaging.

This includes transport for physically moving the data between the servers, which

is usually handled by a utility that is installed on all the physical and logical ser-

vers involved and included queuing capability for all servers and applications, in

order to hold messages until the relevant application is ready to process them.

Orchestration capabilities must be present to manage what messages need to be

sent to what locations, handling publish and subscribe interactions as well as

request and reply. Orchestration includes managing the sequence of events and

error processing and recovery.

The technical mediation aspects of the real-time data integration architecture

will handle any transformations and interactions necessary for different technolo-

gies on different logical and physical servers, including operating systems, file

systems, databases, and other data structures. The real-time data integration archi-

tecture will need to integrate with the organization’s enterprise security solution,

to ensure that data is only provided to authorized applications and users.

Business content
The real-time data integration architecture will need a data semantics layer that

provides the instructions for mapping the messages between formats recognized

by the different applications in the organization and external organizations. This

aspect of the architecture is difficult because it requires a good understanding of

the business processes and the actual contents of the various data structures of

the applications. In order to make real-time data integration work using the hub

and spoke architecture approach, it is necessary to have a canonical message

model that provides a common format for the data in the organization that needs

to be shared between systems or with external organizations. This is an imple-

mentation model in the language used by the enterprise service bus, usually some-

thing like XML or JSON.
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The real-time data integration architecture usually includes a registry of the

data services available, so that when adding more applications to the organization

portfolio it will be relatively easy to identify what data interfaces have already

been defined.

Data movement and middleware
Underlying the tools and engine (ESB) to support real-time data integration are

usually some standard utilities and middleware that allow the whole to operate.

Of course, there are the various operating systems and database management sys-

tems of the applications to be linked on which the data integration tools and

engines run. Also, the enterprise service bus as well as most of the SOA applica-

tions will require a standard application middleware engine (J2EE).

Within each technical environment being integrated there will have to be a

data movement utility that the ESB can use to move data from and to the various

servers. Usually the preference would be for one utility that has flavors that run

on the various platforms required.

External interaction
Interfaces with external organizations tend to be more loosely coupled than inter-

faces between applications within an organization. Certainly the systems usually

don’t require the external party to be operating in order to be able to continue

operating, although as in all things there are exceptions. The interfaces with exter-

nal organizations have to be more fault tolerant since the communications

between the organizations may be more difficult. Security must be a high concern

as the external organization is seemingly outside of the organization firewall.

Interfaces with an external organization almost always involve a well-defined

API or industry messaging standard.

Interactions with external organizations are usually in one direction or of a

higher latency than interfaces internal to an organization. One-directional inter-

faces would involve sending or receiving information without immediate

responses required other than an acknowledgment. Most interactions with external

organizations do not require sub-second response times. For those interactions

with external organizations that do require very fast response times, such as the

interactions with trading systems or exchanges, the message interaction model is

well defined and the latency is well tuned between the organizations to ensure the

fastest possible communications.
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A SIDEBAR FROM THE AUTHOR—ON REAL-TIME DATA INTEGRATION
ARCHITECTURE

Many organizations require real-time data integration capability, and every organization
struggles with managing their interfaces and the overwhelming complexity inherent in doing
so. It is easily demonstrated, as shown in the section on hub and spoke architecture, that
without an enterprise data integration strategy the sheer number of interfaces quickly
becomes unmanageable. The creation of business data hubs, such as data warehouses and
master data hubs, helps to alleviate the potentially overwhelming complexity of managing
data across an enterprise.

Every organization of even middle size should have an enterprise service bus to support,
at least, real-time updates for the master data and for the data warehouse operational data
stores, but also for the real-time movement of transactional data through the organization.

While working for an organization as the enterprise data architect, I proposed investment
in an enterprise service bus architecture. My boss, who was the lead architect for the
organization, counseled me not to be too disappointed if the technology strategy committee
were not very enthusiastic about the idea, as they were not in general interested in future
investment. At the presentation to the technology strategy committee, everyone on the
committee ended up talking about how an integration strategy was crucial and about the
vast number of issues and headaches they each routinely had to deal with associated with
data integration problems. I ended up speaking very little as the members of the committee
detailed all the justification the investment needed multifold.

Issues of moving and integrating data are, in fact, probably of high priority to most
managers in both IT and business functions of every organization. These are tactical
problems for which they will welcome a strategic solution. Attempting to solve the
integration needs individually for each application in the organization is an overwhelming
problem. It will cost the organization many times the cost of a strategic approach and an
investment in an enterprise service bus and a canonical data model and even an enterprise
metadata repository.
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Data integration and unstructured data
The discussion in the previous sections on batch data integration and real-time

data integration addressed moving and integrating data stored in structured data

structures, such as relational databases. However, databases only contain a small

percentage of the data in an organization. The vast majority of organizational data

is unstructured. It is important to be able to analyze unstructured data as well as

integrate unstructured data with structured data.

A combination of recent breakthroughs in data integration technology and the

knowledge developed in various data management disciplines such as business

intelligence, data warehousing, and enterprise content management over the last

two decades has culminated in many new and emerging data integration solutions.

These new solutions do not replace the data integration techniques and solutions

in current use but extend and refine what is already available.

Big data, cloud data, and data virtualization
Cloud architecture not only extends outside of the enterprise the data that needs

to be integrated with internal data, but also introduces techniques and technolo-

gies around data and process replication. Big data technologies bring the benefits

of distributed processing, with accompanying data integration challenges.

Data virtualization is the culmination of two decades of development and

refinement in data management, incorporating solutions from batch data integra-

tion (ETL) and real-time data integration (ESB and hub and spoke), along with

techniques from other data management disciplines and new technologies around

unstructured data. Data virtualization servers don’t replace the business intelli-

gence tools, data warehouses, enterprise service buses, web services, or enterprise

content management solutions, but build on them.
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The technologies developed around cloud computing and big data recognize

the shift of interest from the relatively small portion of data located in relational

databases to leveraging the massive and varied available data located in both

structured and unstructured form, in and out of the confines of the organization’s

data centers.
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Why is data integration important in the cloud?
Cloud solutions sound exceedingly attractive to management: It becomes unnec-

essary to manage all that infrastructure anymore, and management can quickly

scale up (and down) volumes if needed.

Yet, in using cloud architecture, an organization should have concerns about

latency caused by the physical distribution of the data and, even more importantly,

the security of the data being stored in the cloud. Cloud solutions may be slower

than local solutions because of potential delay caused by the speed of data traveling

to and from the physical location of the cloud service provider, and the extra time

needed to traverse additional security requirements for the data located in the cloud.

How secure is data located in public cloud solutions?What are the legal ramifications

of storing data in the geopolitical domains of the cloud vendors regarding privacy?

In general, the solutions for data integration regarding data in a public or pri-

vate cloud are the same as for local data, since access to data is usually through

virtual addressing. As long as the data consumer has sufficient access to the data

located on the cloud, the data integration solutions are the same as for local data,

with some additional concerns about latency and security.

Public cloud
With cloud solutions, organizations can rent computing power and software rather

than buy it. This allows an organization to have additional servers, environments,
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and even applications with standard configurations available in minutes from a

service provider operating out of a remote data center. Access to the rented com-

puting environment is usually through an Internet protocol. There are many poten-

tial benefits possible for an organization using this kind of model; primary

advantages are the agility it affords the organization to move very quickly and the

cost savings of not having to buy and manage resources needed for infrequent

peak demand. In Figure 19.1, the applications located within the organization

data center passes data to and from an application located in a public cloud

location.

Cloud security
Primary concerns around cloud solutions have to do with security. In the most

basic situation, the cloud provider is serving many organizations within the same

network environment. An organization could be concerned that their data might

be hacked (accessed without permission) by another organization operating in the

same area of the cloud data center. Even in cases where the cloud service pro-

vider has created a separate private cloud environment for an organization,

FIGURE 19.1

Integration with Cloud Applications.
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operating on a separate network, behind a separate firewall, there must be concern

for whether the service provider is providing adequate security from intruders.

The physical security provisions of the cloud service provider may be a con-

cern, although since the provider is supporting security for all their customers and

security is a differentiator, they are probably providing physical security which

exceeds the internal capabilities of most individual organizations.

Additionally, the data security laws of the country where the cloud provider is

operating its physical data center will be of concern to some organizations. For

example, a Canadian company may not want to use a cloud service provider oper-

ating in the United States because its data could be subpoenaed by an American

court.

Certain types of organizations will not be able to utilize public cloud solutions

for their most private and sensitive information, such as the customer data from

financial institutions or classified data from government organizations, but most

organizations may find that the capabilities offered by cloud service providers are

both less expensive and more secure than those they could support internally and

would have many uses. Even the most security-conscious organization may find it

useful to be able to create development environments in the cloud quickly, thus

speeding up development of custom applications and familiarity with new vendor

packages, while their internal organizations are provisioning environments within

their own firewalls and data centers.

What many chief security officers are discovering, to their horror, is that cloud

services are so easy and inexpensive to acquire that parts of their organizations

may already have data out in public cloud environments without having been

concerned with the issues of adequate security. Cloud services are so easy to

obtain that the inventory of organizational data assets may suddenly be uncertain.

Like data on laptops and mobile devices, data in the cloud is outside the organiza-

tion’s physical control and adds greater complexity to the problems of managing

data security.

Cloud latency
There are three basic reasons that the speed of data integration with data housed

in a cloud environment might be slower than data located in a local data center:

the speed of the network infrastructure might be slower, extra time is needed to

pass through the cloud security, and extra time is needed for the data to traverse

to the physical location of the cloud data center.

The network infrastructure of an internal data center might or might not be

constructed with faster connections than a cloud data center. Although an internal

data center would probably be using expensive and fast components for their net-

work, especially for production systems (i.e., fiber-optic network), it is likely that

a cloud data center would also be investing in fast network infrastructure even

though they would be using commodity (cheap) hardware. Delays may not be
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within the cloud data center but rather within the path data must take to get to

and from the cloud data center.

Moving data to or from a cloud data center, or accessing data in a cloud data

center, will involve passing through the extra security layers (firewall) around of

the cloud data center, with the extra time that would be involved, even though

that may be minimal.

What cloud service purveyors minimize in their advertising is that cloud data

centers actually do exist in the real world in an actual physical location. Data

passing to and from these physical data centers are limited by real-world con-

straints such as the speed constraints of how long it takes for digital information

to pass to and from the physical site of the cloud data center. The physical dis-

tance of a cloud data center may have latency just as interaction between sites in

different regions of the world will have latency. The physical distance from the

cloud data center combined with the network infrastructure to and from the cloud

data center may exacerbate any delay.

Although data integration solutions don’t necessarily need to be different in

including data from a public cloud as they would for local data integration, if

very low latency is a requirement, it may be necessary to architect a data integra-

tion solution similar to the integration of geographically separated hubs of data

located on different continents. Solutions such as database replication can be used

to make up for latency of geographically distributed data, but the extra disk

required may negate much of the savings benefits of the cloud solution.

Cloud redundancy
The servers and disk being used in most cloud configurations are commodity

devices: inexpensive, easy to acquire, install, and configure. Therefore, the manage-

ment of these commodity servers includes an assumption that there will be more

frequent errors than in traditional in-house server configurations. That is, the mean

time to failure is higher on commodity hardware. In order to create a fault-tolerant

environment using commodity hardware, most cloud-oriented architectures use

some form of data redundancy to enable smooth continuity of processing.

Cloud operating systems and data management systems, such as Hadoop, keep

an odd number (as in not even) of copies of data. Additionally, data is usually dis-

tributed across multiple servers or nodes. When a server fails, processing falls

back to one of the data copies. Having an odd number of copies allows for the

nodes to compare versions of the data to verify that none of the copies have been

corrupted or lost. The more critical the data, the greater the number of copies that

are specified in the configuration, and, of course, the greater the rental cost.

The disk usually used in internal production environments is a “smart” disk

with redundancy and fault tolerance built in, costing as much as 10 times that of

commodity disk. Having three or five copies of data on commodity disk in a
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cloud environment should still be less expensive than internal disk, especially

when including support costs.

More than with data kept internally, data kept in the cloud should include an

inventory and auditing that no data has been lost or misplaced. With thousands

and millions of commodity servers being constantly provisioned and deactivated,

cloud services users should ensure that they have access to and are processing all

the data they think they are. Also, when deactivating servers in the cloud, some

concern should be taken to ensure that all data is entirely deleted prior to surren-

dering the servers.
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A technology whose time has come
Data virtualization solutions allow an organization to present to their data consu-

mers (people and systems) a real-time integrated view of data brought together

from various locations and technologies and transformed into the format required.

This is not a new business desire; rather, it’s just that previous technical solutions

tended to be too slow to make the real-time transformation and consolidation

usable. Data warehouses were created primarily to be an instantiation of an inte-

grated view of data because it wasn’t feasible to do so in real time with a

response time useful for business analysts. The most exciting aspect is that the

information integrated and transformed by data virtualization includes unstruc-

tured sources as well as traditional structured sources of business intelligence.

Data virtualization is the culmination of all the techniques and technologies

perfected in data integration and business intelligence over the last two decades.

Data virtualization solutions are not meant to replace data warehouses but to build

on top of them to integrate historical data in the data warehouse in real time with

current data from various types of data structures that are local, remote,
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structured, unstructured, and transient and then to present them for instant use to

the applications or users who need them in the format required.

The data integration server as depicted in Figure 20.1 provides a connection to

various source data stores and technologies, transforming and integrating the data

into a common view, and then providing the data in an appropriate format to an

application, tool, or person in an expected form. This depiction is based on a pre-

sentation by Mike Ferguson at Enterprise Data World (Ferguson, 2012).

The data virtualization server can access data stores from the remote data of

public cloud to the very local individual files, and differing technologies from

mainframe indexed files, to documents, web content, and spreadsheets. The data

virtualization server leverages all the lessons of data integration to most effec-

tively access and transform the various data into a common view or views and

builds on that with enterprise content management and metadata management to

integrate structured and unstructured data. The organization’s various data ware-

houses, document management systems, and Hadoop file stores are definitely

among the sources to the data integration server.

The data consumers who use the integrated views from the data integration

server are not just individuals, but more likely applications that leverage the inte-

grated data for real-time decision making, or business intelligence tools to present

the integrated data on screens and reports. The format of the data coming from

the data integration server can be one that is most appropriate for the user,
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application, or tool: a web service, a relational database view, an XML file, a

spreadsheet, etc.

Business uses of data virtualization
Business intelligence solutions
The results from data virtualization solutions will not return data faster than a

data warehouse query. The reason is that a data warehouse is specially designed

to return data quickly and a data virtualization solution needs to go through extra

steps to transform and integrate the data. However, additional new types of data

can be integrated more quickly with a data virtualization solution, and current

data can be included and integrated real time.

Integrating different types of data
Data virtualization solutions are focused not just on the real-time aspect of data

integration, which is an important goal in itself, but on the inclusion of a much

broader set of data types than was previously included in business intelligence

solutions.

Data virtualization solutions include the integration of data from unstructured

data sources such as documents, e-mail, websites, social media posts, and data

feeds, as well as the more traditional data from relational and other types of data-

bases. In addition, data can be integrated from personal spreadsheets (where so

much of an organization’s data seems to live), files and databases on central ser-

vers, and data from the cloud and external sites. Data virtualization solutions can

include data from real-time message solutions and data streams.

Quickly add or prototype adding data to a data warehouse
Data warehouses are not replaced by data virtualization solutions for two reasons:

Data warehouses provide historical data, and data warehouses are faster. Data

warehouses are a source for a data virtualization solution which makes both the

data virtualization server and the data warehouse more powerful. A data ware-

house may be a target from a data virtualization server, too, of data transformed

from another source, including possibly unstructured sources into a structured for-

mat the data warehouse can use.

Data warehouses can be very powerful and useful solutions for an organization

to use in data consolidation and reporting. However, it tends to take a very long

time to add a new data source to a data warehouse, from concept to implementa-

tion. Data virtualization solutions can be used to quickly integrate additional data

sources with data warehouse data to determine if the result is useful and to provide

a temporary solution until the data source can be added to the data warehouse.
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Data warehouses are designed for large amounts of data to be accessed and

analyzed quickly. Data virtualization solutions must perform additional steps of

collecting, transforming, and consolidating data from various data structures.

Therefore, it is reasonable that data warehouse data retrieval will be faster than

data virtualization retrieval.

Most data warehouses contain periodic snapshots of the state of data at certain

points in time—historical data. These snapshots can be compared to one another

to show historical changes or trends. This historical data is almost certainly not

available in the operational systems and is difficult to show through a business

intelligence or data virtualization solution without the data warehouse providing

persistence or long-term storage of the historical data snapshots.

Present physically disparate data together
Besides the capability of transforming data in various formats into a consistent

view, data virtualization solutions allow data from separate locations to be logi-

cally presented together (integrated). This is very useful when operational systems

as well as reporting solutions have multiple instantiations in various locations,

such as regional or business-line ERPs and data warehouses.

Leverage various data and models triggering transactions
The ultimate power of big data integration and management is in the ability to

utilize not only various data types in analysis, but also results and process models

that come out of that analysis to trigger real-time response to events. Data virtua-

lization allows the integration of large amounts of data to be pumped through ana-

lytical and risk models to trigger both notification of organization decision

makers and even the execution of transactions.

Data virtualization architecture
Sources and adapters
The data virtualization server architecture of course needs to include connections

to the various data sources to be accessed. Data virtualization server products will

provide adapters for the various types of sources: relational databases, files, docu-

ments, web content, and the like. Each particular data source to be accessed needs

to be made known to the data virtualization server and the metadata imported and

integrated.

Mappings and models and views
It is necessary to define the mappings from each data source to the common inte-

grated data model or virtual view of the data defined in the data integration
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server, the canonical model. This defines how the data from each source system

needs to be transformed and reformatted in order to integrate the data.

It is an important but difficult task to define the common integrated data

model (Ferguson, 2012) or the canonical data model for the organization. It is the

agreed common virtual view of the integrated data of the organization. Both

defining the canonical data model for the organization and mapping the data from

the sources to the canonical model require both a business and technical under-

standing of the data.

It is very powerful to have one common virtual view in the data virtualization

server that supports the needs of the entire organization, but it is also possible to

have multiple various virtual views (van der Lans, 2012) of the data represented

in the data virtualization server, as shown in Figure 20.2.

Integrating data from different technologies into a single view involves map-

ping the metadata attributes (or tags) from unstructured data and the key or index

attributes from structured data to common attributes in the virtual views in the

data virtualization server.

Transformation and presentation
From the virtual views or virtual tables (van der Lans, 2012) in the data virtuali-

zation server, the integrated data can be presented to the data consumer in the
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appropriate format. If the data consumer is an application, the data can be

presented in the application programming interface (API) or web service (service

oriented architecture service) format specific to the application. If the data con-

sumer is a business intelligence tool or an application making a database call, the

data can be presented in structured query language (SQL) or multidimensional

expressions (MDX) format. Similarly, the data may be presented in XML or

JSON if that is the preference of the data consumers. The transformation neces-

sary to the data for presentation is just a technology reformat and is less difficult

to automate than transforming data to the common canonical data model.
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What is big data?
The definition of big data on Wikipedia is given as “data sets so large and complex

that they become awkward to work with using on-hand database management

tools.” The term big, as well as this initial definition, imply that we are simply talk-

ing about the amount of data. However, big data also includes data of various types

found outside of relational databases, such as documents, audio, video, and e-mail,

as well as the increased speed and availability of data. Therefore, big data can be

said to have dimensions of volume, variety, and velocity.

Big data dimension—volume
The volume of data that every organization needs to manage is now growing at a

nonlinear pace. How much data “on-hand” database management tools can handle

is a constantly expanding amount. “Traditional” relational database management

systems can handle the volumes of structured, or relational, data of practically

any organization.

Although existing relational database management tools can handle the

onslaught of the additional data required, they may no longer be optimal for man-

aging huge volumes nor may they be optimized for the various new use cases

around big data. The traditional relational database management systems imple-

ment distributed storage solutions called grid or cluster storage where the data

may be distributed across multiple storage structures randomly, based on the time

received and stored, or based on other key pieces of information, such as the cli-

ent or product. However, the cost of high-volume solutions in traditional database

management systems does not scale linearly, and the volumes these solutions will

support will ultimately hit an upper limit. “Big data” storage solutions such as

those described in Chapter 19 on cloud architecture usually cost scale linearly and

promise no ultimate upper limit to the volumes supported.

Massive parallel processing—moving process to data
When the volumes of data become extremely large, the normal paradigm of con-

solidating data prior to performing operations on the consolidated set of data

becomes less attractive because of the time and extra disk needed to move and
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consolidate the data, plus the time it takes to parse linearly through a single,

consolidated data set. A shift in paradigm for handling these massive volumes

of data includes using parallel processing to simultaneously process against

multiple chunks of data rather than attempting to process against a consolidated

set. This includes leaving the data on the various distributed servers where it is

already stored and distributing the query and update requests across the data

sets, so-called “moving the process to the data” because we simultaneously

perform the process on all the distributed data servers. Ultimately, the

responses, results, and acknowledgments from the distributed servers have to

be consolidated at the process distribution point, so there are important data

integration steps, but the volume of the results to be integrated is much smaller

than the original full set of data.

Hadoop and MapReduce
Massive parallel processing is not a new idea but has been around since the

advent of low-cost central processing units and personal computers. It was not

used more widely previously because of design rather than technology limita-

tions. It is difficult to create algorithms and solve problems in a distributed

manner versus central processing. However, the problem of “search” lends

itself to distributed processing. The volumes of Internet data faced by social

media organizations such as Google, Facebook, and Yahoo led to the creation

of new tools that could solve standard problems using massive parallel proces-

sing. Distributed storage requires the use of distributed file systems (such as

Hadoop) that recognize the data across the physical devices as being part of

one data set, but still know where they are located in order to distribute

processing.

Data for these social media sites is usually stored in a data set that is divided

into a large number of physical devices using the Hadoop Distributed File system,

which is not a relational database solution. Requests against the data are per-

formed by dividing up the request into multiple queries that are sent out to act

against the distributed data simultaneously, after which the results are consoli-

dated. The primary software solution for this problem, called MapReduce, was

originally developed by Google for its web search engine. The standard now

used is an open-source solution called Hadoop MapReduce, developed in

2006 with funding by Yahoo. It became “production strength” (or “web

scale”) in 2008 and is currently hosted by Apache as part of the Hadoop

Framework.

Hadoop and MapReduce solutions still need to distribute the processing

requests and then re-integrate the various results. These distribution and consoli-

dation steps are performed by MapReduce, which can also be categorized as an

orchestration or even a data integration tool. The individual programmer defines

what function needs to be performed against all the distributed data servers, and

the underlying capabilities of MapReduce perform the distribution of the function
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and the consolidation of the results. Hadoop and MapReduce are usually imple-

mented to perform in a batch mode. Real-time search and analysis is performed

against the precalculated results sets, not the vast distribution of raw data. The

data most frequently stored in Hadoop file structures are web logs and web data,

which are usually considered to be unstructured.

Integrating with external data
There are vast amounts of data from outside an organization available to be inte-

grated with an organization’s internal data. Although many of these sources may

have previously been available, at least in print form, the fact that it is now

extremely simple, and in many cases free, to access petabytes of relevant informa-

tion from external sources makes the leverage of this information necessary for

every organization. There are huge data sets available from federal governments,

such as data.gov from the United States federal government, from social media,

and from information companies such as Google. The massive amounts of data

that has been traditionally purchased from companies such as LexisNexis and

Dun & Bradstreet are still available, adding more and more value to the pur-

chased data to compete with what is available for free.

The integration issues on these vast amounts of available external data become

exacerbated: Copying the external data internally is a challenge because of the

amount of time, network bandwidth, and disk space this would require. The pro-

cesses can’t be distributed to the external servers because these are owned by

another organizational entity. Therefore, it is necessary, in general, to read and

process the external data and transform the data to the format for use by the

organization, only keeping the data needed for integration with internal data.

Decisions about the data life cycle are particularly critical for data from external

sources: How much of it is needed? Does it need to be persisted (stored locally)?

How long does it need to be retained? Of course, these questions need to be

answered for an organization’s internal data as well, though frequently the default

answer has been to keep all the internal data, which is not usually an option with

external data.

Visualization
The presentation of big data is a challenge because with the large volume, variety,

and velocity of the information, presenting detailed information becomes difficult

or inappropriate for human consumption. Presentation in visual form frequently

provides the capability to summarize vast amounts of information into a format

that is conducive to human consumption and that may provide the ability to drill

down to a further level of detail, if requested.
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Big data dimension—variety
Types of data
The amount or volume of data is not the only aspect that makes data “big.”

Frequently, when considering what data is available for analysis, organizations

have solely looked at data stored in relational databases. Now, organizations have

the ability to analyze data stored in files, documents, e-mail, audio and video

files, and a vast array of database types in addition to relational databases. In

addition, huge amounts of external data are available that are not entirely “struc-

tured” such as social media data from Twitter, Facebook, YouTube, and blogs.

Integrating different types of data
The key to integrating the different types of data is to use metadata that “tags”

unstructured data with attributes that can be linked. Thus, more “unstructured data”,

like images, are “tagged” with metadata that identifies, for example, what an image

is or who a person is in an image or audio file, as well as when and where the data

was created, updated, and accessed. Documents and e-mail can be indexed by

words, phrases, and names found in the text or associated with the data. Logical

organization of the information is made through taxonomies (hierarchies) and ontol-

ogies (groupings). These “tags” on unstructured data can be linked to keys and

indexes in databases, thus bringing the unstructured and structured data together.

An example of integrating data of various types may be that, for a customer,

an organization has document images of contracts with that customer; contact

information and transaction data in databases; e-mail with and about that cus-

tomer; audio files with the customer’s instructions and service calls; and video of

the customer visiting the organization’s office. All this information on the cus-

tomer may be integrated and available to the customer service representative

when a customer calls the organization.

INTERVIEW WITH AN EXPERT: WILLIAM MCKNIGHT ON HADOOP
AND DATA INTEGRATION

Following is an interview with William McKnight on the importance and use of Hadoop in
data integration.

William McKnight is an expert on data management and has been working with data
integration for many years, populating data warehouses, data warehouse appliances, and
master data management hubs. Recently, he has been working with data integration
solutions to populate Hadoop.

What is Hadoop?
Hadoop makes “source data-database-data access” economical for the management of large-
scale Web logs and other forms of big data. Hadoop, an important part of the NoSQL (Not Only
SQL) movement, usually refers to a family of open-source products, including the Hadoop
Distributed File System (HDFS) and MapReduce. The Hadoop family of products extends into a
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rapidly growing set of tools and utilities. Although open source, many vendors have created some
closed-source additional capabilities and/or added Hadoop support in their product set. Other
open-source Hadoop family products include Avro, Pig, Hive, HBase, Zookeeper, and Sqoop. The
Hadoop File System (HDFS) part of the Hadoop project is like a “big data” extract and load (EL)
tool with good data-screening ability. HDFS runs on a large cluster of commodity nodes.

How is Data Integration (i.e., moving and transforming data) Related to Hadoop?
As a nonoperational platform or file system, Hadoop must receive its data from another
source. Given the enormous volume of the data—and the trade-off that not falling behind
takes the place of delays to clean the data—little is done to transform the data being loaded
into HDFS, but the data is largely just loaded into the Hadoop environment in its raw form.

Have you Seen any Projects Using Hadoop Where Data Integration Issues Led to
Significant Problems? Or Where Insufficient Focus Was Put on Data Integration Issues?
Analyzing Hadoop data without the perspective of other corporate data, currently
maintained mostly in relational systems, is very limiting. Master data management can take
the value of this data in Hadoop up exponentially, but tools like data virtualization must be
available to integrate data between Hadoop and relational database management systems.

What Kinds of Tools or Technologies are Used to Support Data Integration with
Hadoop?
• Traditional ETL Vendors
• Data Virtualization
• Data Integration for the Masses
• Federated Big Data Analysis

How do you Think the Area of Hadoop and Data Integration is Changing? Are the
Tools Supporting it Changing? Where do you Think this Area is Going to?
Hadoop is emerging as data integration is changing, and indeed Hadoop is influencing that
direction. Data integration is becoming more personal and accessible. Companies are also
looking at balancing physical movement with the implementation of virtualization across
heterogeneous data stores. However, with the vast increase in data store types that add
value, data is increasingly becoming decentralized, continues to be replicated, is doubling
every 18 months, and is increasingly seen as a competitive differentiator. As such, its
movement will continue to be important. Each shop will have its numerous specific points
of data integration. Every organization will approach its information architecture uniquely.
There is a need in every organization for a robust, enterprise-ready, fully deployable, low-
cost integration tool. Standardizing a single data integration tool or suite across the
organization will be best so that harmony of skills, practices, and experiences can be
maintained across the enterprise.

Big data dimension—velocity
Because many devices such as sensors, mobile phones, and geospatial tracking

(GPS), are getting cheaper and ubiquitous, there is now an expectation that this

information will be stored and made available. Tagging inventory and assets with

radio transponders allows a constant trail of location information on manufactured

goods. People voluntarily tag themselves with mobile phone location information

and their cars with GPS devices and toll sensors. In short, a huge raft of addi-

tional sensor data is now expected to be available for analysis.
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Not only is data coming at us faster, but the expectation is that the organiza-

tion will be able to use the data immediately to make decisions. The velocity

aspect of big data lies not only in the speed of incoming data but also in the speed

of expected use.

Streaming data
Streams of data are now available from various sources internal and external

to every organization, both free and at a cost. Even though the cost of disk

space is very low compared to what was in the past, the cost of storing this

vast amount of data may still quickly become unwarranted. Every organization

needs to make decisions about the retention period for the various available

data streams. For data that does not contain confidential or private informa-

tion, cloud storage solutions may provide support for temporary, inexpensive

persistence of the data streams with defined redundancy and retention

schedules.

Sensor and GPS data
Internal data may be available from sensors on people and physical assets,

such as inventory and trucks. Real-time sensor data can be used for real-time

decision making, such as fast inventory and detouring product delivery in sup-

port of higher business priorities or issues. Historical sensor data can be used

to improve processes such as standard delivery routes, gasoline consumption,

and productivity. This type of internal sensor data is available to most organi-

zations. The availability of general sensor data and sensor data specific to indi-

vidual industries and businesses has made possible a potential golden age of

analytics.

Social media data
Also available to organizations is the consumer data available on social media

sites. Most organizations monitor data referencing themselves as well as their

competitors on Facebook, Twitter, LinkedIn, and major blog sites in support of

customer service and their organizational reputation.

Traditional big data use cases
Certain big data problems and use cases are common to every organization, such

as e-mail, contracts and documents, web data, and social media data. In addition,

almost every industry has specific cases where they have big data management

problems to solve. Many industries have always had to deal with huge volumes

and varied types of data. Organizations in the telecommunications industry must
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keep track of the huge network of nodes through which communications can pass

and the actual activity and history of connections. Finance has to process both the

history of prices of financial products and the detailed history of financial transac-

tions. Organizations in airplane manufacturing and operation must track the his-

tory of every part and screw of every airplane and vehicle planned and operated.

Publishing organizations must track all the components of documents through the

development versions and production process. Interestingly, pharmaceutical firms

have similar strict document management requirements for their drug submissions

to the FDA in the United States, and comparable requirements in other countries;

thus, for pharmaceutical firms advanced document management capabilities are a

core competency and a traditional “big data” problem.

More big data use cases
Big data use cases are emerging in every industry and organization where tech-

nology solutions can now perform functions with vast amounts of information

and in real-time situations that were not previously available.

Health care
The ability to analyze vast amounts of information allows breakthrough analytical

capabilities in health care at the individual and macro levels. It is now possible to

analyze an entire individual human DNA sequence and compare it against those

of other individuals and groups. The current relatively low cost to perform indi-

vidual DNA analysis (thousands of dollars) has made this tool accessible to a sub-

stantial number of people compared to the initial cost of millions of dollars a few

years ago after the first full human genome was analyzed.

Analysis of the health care data of millions of individuals and groups is now a

routine capability that may lead to making great strides in public health administra-

tion as well as individual health care. The New York Times carried an article

recently (“Mining Electronic Records for Revealing Health Data” by Peter Jaret,

January 15, 2013) positing that analysis of electronic health records may be able to

provide data to support costly clinical trial data collection, providing vastly more

data for data analysis of theories in health care as well as much less costly data.

Logistics
Big data use cases in manufacturing include those in the product development

process itself as well as in inventory and distribution. The low cost of sensors

makes constant monitoring of product manufacturing regarding quality and

productivity a best practice. Identification tags broadcasting unique product iden-

tifiers are now of relatively low cost. They enable a constant monitoring of inven-

tory and the ability to make real-time distribution adjustments.
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National security
Some really fascinating big data use cases are emerging within the area of public

security. Telecommunications information analysis has been a traditional function

of law enforcement in monitoring communications to or from specific individuals.

Now, the actual contents of vast numbers of audio conversations can be moni-

tored for the use of specific words or phrases such as “bomb.” Networks of

associates of known and potential individuals who pose a security threat can be

developed from the telephone history of billions of phone calls. That information

now includes the location of where calls were made and received as well as where

the mobile phone is currently located.

Leveraging the power of big data—real-time decision
support
Triggering action
Important big data use cases are moving from analysis of vast amounts of histori-

cal data to analysis of vast amounts of current data that can be used to make

real-time decisions.

Changes in available data in the area of utilities and traffic control are making his-

torical data analysis fascinating and real-time data analysis amazing. Practically every

vehicle on the road is now equipped with a GPS or other tracking device, making it

possible to perform traffic analysis at the individual vehicle behavior level and macro

analysis of the combined behavior of all the vehicles. This information is being used

real time to manage traffic lights and long term to affect infrastructure investment.

The reduced cost of sensors has made it cost effective for utilities to have vast

numbers of sensors in place providing environmental and use data that can be

analyzed and acted upon in real time plus stored and analyzed for process

improvement. Models that have been created from big data of utility grid behav-

ior just prior to an emergency can be used in the future in real time to automati-

cally trigger utilities to cut off, bypass, or obtain additional resources.

Risk management calculations in financial services, using a vast amount of

historical information on holdings and prices and price changes, can provide

worst case scenarios and probabilities concerning financial portfolios. The models

created from these calculations are then used in real-time decision support, trig-

gering warnings and automatic trading based on streaming pricing data.

Financial institutions model every individual’s buying and use behavior. Then

when the individual’s activity falls outside of the regular pattern, warnings are

automatically distributed to the individual and client support specialists to verify

that the activity is not fraudulent.

In a less frightening direction, big data analysis of customer behavior for buying

and renting movies, books, and clothes can now yield recommendations to individ-

ual customers. The following phrase is now common: “other customers like you
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also purchased . . .”. Even analysis of social media contents of individuals and the

networks can be used to recommend movies, music, and other entertainment.

Speed of data retrieval from memory versus disk
Faced with the increased velocity of big data decision-making requirements, small

real-time delays in incoming data processing, data access, and response can be

significant. Once again, the lower costs of fast disk and memory can be utilized

to take advantage of big data velocity.

A simplistic way of thinking about the relative time to retrieve data is that if it

takes a certain amount of time in nanoseconds to retrieve something in memory,

then it will be approximately 1000 times that to retrieve data from disk (millise-

conds). Depending on the infrastructure configuration, retrieving data over a local

area network (LAN) or from the Internet may be ten to 1000 times slower than

that. If we load our most heavily used data into memory in advance, or something

that behaves like memory, then processing of that data should be speeded up by

multiple orders of magnitude. Using solid-state disk for heavily used data can

achieve access and update response times similar to having data in memory.

Computer memory, as well as solid-state drives, though not as inexpensive as tra-

ditional disk, are certainly substantially less expensive than they used to be and

are getting cheaper all the time.

Why is this concept relevant to data integration? These differences in proces-

sing time are changing the way many applications are designed and the way anal-

ysis and analytics are performed. Traditional data analysis would pull together

data (data integration) into a report that an analyst would view and derive insight

from. In many situations, a model would be created to attempt to predict future

behavior or manage risk. The model would have to be loaded with large amounts

of historical data.

The models generated through traditional analysis or through big data analysis

are now being used against the large volume and velocity of data available in real

time, in addition to historical data, and actions are being triggered immediately

based on the results. Risk calculations are used to immediately trigger actions

based on price fluctuations. Customer sentiment calculations immediately trigger

response. Current sales information can immediately trigger inventory redistribu-

tion. Traffic volume can immediately trigger additional support.

From data analytics to models, from streaming data to decisions
The ultimate goal of big data then is to tap into the vast amount of information

available to make better real-time decisions.

Large volumes of data of various types and sources are analyzed for patterns

that identify potential risks and opportunities for an organization. This analysis is

probably performed by highly skilled data analysis specialists such as data scien-

tists in a flexible analytical environment called an analytics sandbox. The analysts
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create process and event models that identify opportunities to be leveraged or

risks to be avoided.

The models are then integrated with real-time streaming data that, when cer-

tain patterns or situations occur, trigger warnings and transactions to respond

immediately to the highlighted situation.

These opportunities and risks are currently available in every industry and

organization. All consumer organizations, for example, monitor social media

sources for feedback that triggers action. Organizations that don’t immediately

respond to negative information in social media could quickly find their reputa-

tion in crisis.

Big data architecture
Tools and technologies for big data include those for other enterprise information

management activities: enterprise content management (or document man-

agement), data warehousing and business intelligence (including data visualiza-

tion), data analytics, data integration, metadata management, and data

virtualization. The need for tools in support of these capabilities becomes more

important with big data because the volumes are usually beyond a human

manageable scale and require some degree of automation.

Figure 21.1 depicts the logical pieces involved not only in big data integration

but in big data solution architecture as well.

Operational systems and data sources
The sources of data in a big data architecture may include not only the traditional

structured data from relational databases and application files, but unstructured

data files that contain operations logs, audio, video, text and images, and e-mail,

as well as local files such as spreadsheets, external data from social media, and

real-time streaming data from sources internal and external to the organization.

Intermediate data hubs
The organization is probably using intermediate data hubs for structured data

(data warehouses, marts, and operational data stores), various documents and files

(email and enterprise content management servers), social media and web data

(Hadoop), and master data, with various flavors, implementations, locations, and

configurations of all of these.

Existing data warehouses, data marts, and analytic appliance implementations

are an important part of the full big data architecture, although these data struc-

tures are probably only storing structured data. Integrating the data in these vari-

ous warehouse stores with other types of data and current operational data is

where the power of big data analysis can be achieved.
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Various data streams will be coming in to the big data environment, and some

of it will persist, for however long specified by data type and content, as appropri-

ate to the organization. Cloud-based solutions and Hadoop may be appropriate for

temporary persistence of this type of high-volume, low-value data.

Business intelligence tools
Structured business intelligence
Along with the data warehouse data stores are the traditional business intelligence

tools that operate primarily on structured data in relational databases. The tradi-

tional business intelligence tools become more powerful than ever when fed data

in an appropriate structured format from the unstructured data sources through the

data virtualization server.

Search business intelligence
Critical to big data architecture is the inclusion of tools for managing documents

and e-mail, including business intelligence tools focused on analyzing this data,
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which is commonly referred to as “search” type of analysis. The search analysis

tools can access across data of many types and in many locations.

Hadoop and MapReduce business intelligence
In many cases, “big data” and Hadoop are used as synonyms. As part of the

Hadoop solution set, MapReduce is generally used for orchestration and analysis

of the data stored in the Hadoop File System.

Visualization
Data visualization tools for presenting massive amounts of information are used

against data from most of the intermediate data hubs, including data warehouses,

data streams, and Hadoop.

Data virtualization server
The data virtualization server will be a central and critical component in the big

data architecture, as it facilitates integrating data from various technologies and

sources and formatting for use by various data consumer tools and applications.

Batch and real-time data integration tools
Moving and presenting the data between data structures and tools in the big data

architecture can utilize both batch (ETL) and real-time (ESB) data integration

tools, as well as the capabilities of the various components, including the data vir-

tualization server, MapReduce applications, and business intelligence tools.

Analytic sandbox
Big data architecture will usually include an area set aside for analysis of the

available data sources by analytic process specialists. The analytic sandbox allows

the review of large amounts of data from various sources and of various types by

specialists using sophisticated tools to identify patterns in the data. The analysts

produce reports of results and process models to be used for real-time decision

making.

Risk response systems/recommendation engines
The ultimate goal of big data is to leverage the vast information for real-time

decision making. The risk response systems use complex event processing (CEP)

and the process models developed by the data analysts and data scientists to

respond to real-time information and trigger warnings to business managers as

well as to trigger transactions to respond to opportunities and risks highlighted

during the big data analysis processes.
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INTERVIEW WITH AN EXPERT: JOHN HADDAD ON BIG DATA AND
DATA INTEGRATION

Following is an interview with John Haddad on Big Data and Data Integration.
John Haddad is Director of Product Marketing for Big Data at Informatica Corporation.

He has over 25 years’ experience developing and marketing enterprise applications. Prior to
Informatica, John was Director of Product Management and Marketing at Right Hemisphere,
held various positions in R&D and Business Development at Oracle Corporation, and began
his career as a scientific programmer at Stanford University.

How do you Define “Big Data”?
Big data is the confluence of big transaction data (e.g., RDBMS), big interaction data (e.g.,
social data, web logs, sensor devices, e-mails), and big data processing (e.g., Hadoop)
primarily resulting from the adoption of social, mobile, and cloud computing. Big data can
drive rapid innovation by analyzing and extracting value from more data, more types of data,
and at faster speeds.

How is Data Integration (i.e., moving and transforming data) Related to Big Data?
It turns out that 80% of the work in a big data project involves data integration. When I
speak about data integration, I’m referring to the ability to access, parse, normalize,
standardize, integrate, cleanse, extract, match, classify, mask, and deliver data. According
to D. J. Patil in his book Data Jujitsu, “80% of the work in any data project is in cleaning
the data.” And in a recent study involving 35 data scientists from 25 companies one of the
participants stated, “I spend more than half my time integrating, cleansing, and
transforming data without doing any actual analysis. Most of the time I’m lucky if I get to do
any ‘analysis’ at all.” (Kandel et al. Enterprise Data Analysis and Visualization: An Interview
Study. IEEE Visual Analytics Science and Technology (VAST), 2012). In other words, before
you can do anything useful with big data, you need to integrate it. This is because big data
is coming from so many different types of sources and in many different formats.

How and Why is Data Moved for Big Data?
Not only is there much more data, but there are many different types of data sources in
various types of structures and formats. Data is being generated and consumed at a massive
scale from both inside and outside the enterprise from customer and supplier transactions,
the Internet, and social, cloud, and sensor devices to name but a few. To extract value from
big data requires that data be moved from the point of origin and source systems to big data
platforms that integrate, analyze, and deliver value from all this raw data.

Are There Other Aspects of Data Integration in Big Data Besides Moving
and Transforming Data?
Yes, in some cases you may want to avoid moving data by using data virtualization. Data
virtualization allows you to create a data abstraction layer that hides the underlying
complexity of the data sources. From this data abstraction layer you can decide whether to
federate across the data sources or move the combined data into a physical target.

Another key aspect of data integration is metadata management and data governance.
Metadata management creates a semantic layer to better understand the data and support
data governance initiatives.

Are There Different Data Integration Considerations for Structured Data Integration
and Unstructured Data Integration?
There are; however, I find it more useful to delineate between traditional row-column
formatted relational and flat file data versus multistructured (e.g., hierarchical, graph) and
unstructured data (e.g., text). The former in many cases can only be processed at a scale
using traditional data platforms (e.g., RDBMS), while the latter can be stored and processed
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more cost-effectively using emerging NoSQL technologies such as Hadoop. You can also
draw a distinction between high-density, high-value data (e.g., typically stored in RDBMS)
and low-density raw data (e.g., web logs, social media text) to help decide where to best
store, integrate, and process data.

Have you Seen any Big Data Projects Where Data Integration Issues Led to
Significant Problems?
Yes, when data integration is not done properly, it all too often results in project delays,
failed projects, and low end-user adoption and can directly impact the business resulting in
poor customer service, inferior products, inefficient operations, and bad decision making.
Consider the implications of incomplete, inconsistent, inaccurate, and untimely data being
delivered to the business. The impact can be inconsistent customer experience across order
channels, declining loyalty due to delivery delays or billing errors, or lost revenue from lack
of optimal cross-sell/up-sell.

Have you Had Experiences Where Particular Attention was Paid to Data Integration
in Big Data?
The best practice process for data integration in big data projects is one that involves the
ability to access and ingest, parse and prepare, discover and profile, transform and cleanse,
and extract and deliver data. As I mentioned earlier, 80% of the work in a big data project
is data integration. For example, large global banks use data integration for big data
projects related to fraud detection, risk and portfolio analysis, investment
recommendations, regulatory compliance, and proactive customer engagement. I like what
Amazon CTO Werner Vogels said during his keynote, entitled “Data Without Limits” at the
Cebit trade show earlier this year: “Big data is not only about analytics, it’s about the whole
pipeline. So when you think about big data solutions you have to think about all the
different steps: collect, store, organize, analyze and share.”

Have you Had Experiences Where Data Integration Was Neglected on a Big Data
Project? Why do you Think Data Integration Was Neglected?
Yes, it is usually neglected because of a quick and dirty approach to integration that takes
the path of least resistance. These projects don’t fully consider the scope and necessary
requirements to support and maintain big data projects in production as data volumes grow
and new data types are added. Organizations need a data integration platform that can scale
linearly, provides 2437 reliability, supports an architecture flexible to change, and
provides tools that enhance productivity and facilitate collaboration.

Are There Special Considerations Around the Movement of Metadata for Big Data?
I would say that there are special considerations related to metadata for big data in general.
Bear in mind that not all data is modeled on ingestion with big data projects. Raw
interaction data (e.g., social data, web logs, sensor devices, e-mails, etc.) tends to be
processed as schema-on-read as opposed to schema-on-write. Therefore there is an inherent
lack of metadata in big data projects. This is where the importance of data governance
plays a critical role in big data projects. Metadata can be acquired through data discovery
(e.g., domains, relationships) and curated (e.g., normalized, cleansed) through data
stewardship. Some metadata can be accumulated automatically as data is accessed,
integrated, analyzed, and used throughout the enterprise. For example, data lineage for
compliance audits and usage patterns can be automatically acquired with some data
integration tools. There are different types of metadata (technical, business, operational)
that are very useful in managing big data projects so as to enhance search, simplify data
audits, ensure trust, improve collaboration, reduce rework, and increase security.

What Kinds of Tools or Technologies are Used to Support Data Integration for Big Data?
Big data needs a data integration platform optimized to support a heterogeneous data
environment, including productivity tools, one that scales for production use and multiple
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projects and makes it easier to support and maintain projects throughout the project life
cycle. Big data projects require data integration tools that provide consistent and reliable
connectivity for both transaction and interaction data, prebuilt ETL and data quality
transformations, parsing libraries (parsers), a visual integrated development environment
(IDE) to build data flows, and data profiling. Organizations need a data integration platform
that supports all volumes and types of data and also supports real-time and batch
processing through data replication, data streaming, and complex event processing (CEP).
Data integration should be considered as part of a complete big data reference architecture
that also includes MDM.

When Might you Use Batch Data Integration versus Real-time Data Integration in a
Big Data Project? Do you Think it is Worthwhile to Have Both Batch and Real-time
Data Integration Solutions Working with a Big Data Solution?
Batch integration is primarily used to preprocess large volumes of data for analytics, and
identify patterns and trends that can be exploited by the business. Business value is derived
from batch integration by processing more data faster and more types of data. Real-time
data integration has a couple of uses: to smooth out the big data processing load by
capturing and integrating only changed data to avoid unnecessarily staging data and lengthy
batch windows and to proactively respond to events based on situational awareness. Both
batch and real-time data integration can provide some very interesting big data solutions.
For example, it is common in fraud detection to analyze a very large corpus of historical
data in batch that identifies patterns of fraud and uses real-time data integration to
establish situational context and determine in real time the likeliness that a fraud event is
happening, which in turn generates an alert.

How do you Think the Area of Big Data is Changing? Where do you Think This Area is
Heading?
The technology side of big data is changing rapidly. However, I’m afraid (as often is the case
with new technologies and trends) that the people and process side of the equations is not
adopting best practices fast enough to assimilate the advantages big data has to offer.
Ultimately, success depends on the business and IT working much more efficiently and in
collaboration with each other. The formation of data science teams devoted to managing
data as an asset to create innovative data products and services requires a variety of skills,
some of which need to be acquired from outside or through additional training. Big data
projects deviate from traditional business intelligence in that organizations need a more
aligned top-down business technology strategy that continuously explores ways to maximize
the return on data, monetize data assets by introducing new products and services, and
improve business operations. We can expect to see executive sponsorship of data science
teams aligned with strategic business initiatives (e.g., increase customer acquisition and
retention).

Do you Think the Technologies for Supporting Big Data, especially Around Data
Integration, are Changing?
Big data technologies are changing and evolving rapidly. The open-source community and
commercial vendors are working with their customers to mature newly emerging
technologies and make sure these technologies work with existing data management
infrastructure. We will see more purpose-built applications based on common design
patterns (e.g., recommendation engines) and vertical specific big data use-cases (e.g., risk
and portfolio analysis, predicting patient outcomes, vehicle telematics). A lot of new
technologies require specialized skills that add to the complexity of big data projects. So we
will see vendors begin to integrate these technologies and create abstraction layers that
hide the underlying complexities of these technologies.
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Data integration architecture
Why data integration architecture?
Every organization should have a data integration strategy as the volumes and

complexity of the data they are required to manage escalates rapidly. Without a

data integration strategy the natural complexity of interfaces between applications

quickly becomes unmanageable. The data integration strategy may be part of the

157



data management strategy or simply part of the technology strategy, but it should

include batch, real-time, and big data integration management.

This chapter will review the components of a data integration strategy.

Data integration life cycle and expertise
The project life cycle of any data integration project is similar to the flow of a batch

data integration project, as depicted in Figure 5.2. Additionally, as in Figure 22.1, a

data discovery process or impact analysis may be needed early in the analysis

to determine where and how much data will be impacted by the project. This depic-

tion does not include the specification or acquisition of data integration tools or

additional disk or servers. Data discovery is usually a necessity for most data inte-

gration projects, including master data management and data archiving. It is usually

less of a need for data conversion and data warehousing projects, where the sources

may be known. The need for a data discovery phase is becoming even more rele-

vant with the advent of big data volumes and complexity.

Identifying the right resources to specify and code data integration solutions has

presented a conundrum from the early days of batch ETL development. Designing

overall solutions requires a combination of specific technical knowledge of data

integration technology and tools, high-level business process flow, and detailed

business data understanding. It is necessary to develop overall data integration

design using a combination of people working together with either a technical or

business resource leading the effort. Specifying detailed interfaces requires a com-

bination of detailed tool knowledge, detailed technical data knowledge, and

detailed business data knowledge. Once again, the effort may be led by either a

business or technology person. Coding solutions requires expertise in the chosen

data integration technology and tools, but with detailed specification approved by

the business experts on the source and target data and the application developers

supporting the source and target systems.

Best practice and consensus is that the creation of a Center of Excellence for

data integration within an organization’s data or information technology function

is most productive for developing and managing data integration solutions, where

the participants have expertise on the life cycle of data integration development

projects as well as expertise in the data integration technologies. Requests for

interfaces or data integration solutions can be made to the center of excellence,

which can then involve the necessary business and technical expertise from the

organization as well as ensure that solutions follow organization policies, stan-

dards, and best practices.

Security and privacy
As with all data and application implementation in organizations these days, data

integration development must ensure that the overall data integration architecture,

individual data integration solutions, and all data integration development
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processes support organizational policies, standards, and best practices in security

and privacy.

This can be particularly challenging for data integration projects starting with

the need to perform data discovery and profiling of real production data. It is usu-

ally necessary to negotiate with the information security organization and have

data discovery and profiling performed by individuals with appropriate access

authority, which may mean assigning more expensive individuals or even training

individuals who have the appropriate authority to perform the profiling tasks.

Since one of the main functions of data integration is moving data, it is

required that all data in motion (or between persistent data stores) be adequately

secured and, if necessary, encrypted, to certify that it can’t be accessed by unau-

thorized persons or systems.

For data that is presented through data integration solutions, either through

copies or views, it is necessary to ensure that all individuals accessing the data

have the authority to do so. Moreover, any systems or applications who are given

copies or access to data should only allow access to individuals and systems that

have the appropriate authority. Since any system that gives access to data has the

responsibility to manage appropriate access authority, it is necessary to negotiate

with source applications to get access; it is also necessary to ensure that target

applications only allow appropriate access.

FIGURE 22.1

Data Integration Project Life Cycle.
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Data integration engines
Operational continuity
The processing engines for data integration are operational systems; hence they

have to be up and running to operate and orchestrate the system interfaces. These

systems have to have immediate system support available and be included in the

disaster recovery tier of the most critical systems being integrated.

The data integration engines support, by design, across multiple technology envir-

onments, operating systems, database management systems, and vendor applications.

ETL engine
For batch data integration, which is used to support data warehousing, data archiving,

and data conversions, among other things, the organization may be operating one or

more ETL engines. There are possibly more than one because the organization may

have multiple data warehouses that were developed separately using various ETL

technology solutions or may even be using the same technology but multiple

instances. Figure 22.2 depicts the basic batch data integration architecture supported

by the ETL engine.

Business intelligence
reporting, dashboards, analytics, data mining

Data warehouses, data marts,
consolidated data stores

data archives

Applications portfolio

FIGURE 22.2

Batch Data Integration Architecture.
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Batch ETL engines are most frequently used to load data into data warehouses

and extract out for business intelligence, analytical, and reporting tools.

Enterprise service bus
Real-time interfaces are most frequently implemented using an enterprise service

bus (ESB) to orchestrate the interactions between applications and systems.

Real-time interfaces are used to support master data management (moving

data into and out of the master data hubs real time) as well as the movement of

transactional data updates between applications. Figure 22.3 shows the real-time

data integration architecture supported by an enterprise service bus.

The enterprise service bus implements the movement of data between applica-

tions and the transformation of data from the specific source application format to

the common canonical model format and to the format of the target systems. The

enterprise service bus supports the interaction patterns of “publish and subscribe”

and “request and reply”.

Supporting the enterprise service bus are local utilities to handle data move-

ment, event monitoring, and transaction processing middleware.

Data virtualization server
The data virtualization server provides real-time integration of data from various

technologies and types, both structured and unstructured. It pulls the data and refor-

mats into an integrated view and then presents in appropriate formats for various

consumers, including people and systems, without staging or instantiating the inter-

mediate data. Figure 22.4 depicts the data flow of a data virtualization server.

Controller
/ monitor

Enterprise service bus

FIGURE 22.3

Real-Time Data Integration Architecture.
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A data virtualization server may utilize data from an ETL engine or an enter-

prise service bus as a source, as well as structured and unstructured data hubs and

operational systems, and may provide data to a data warehouse or an operational

data store as a target, as well as various operational applications and business

intelligence tools.

Data movement
The data integration engines generally use the utility capabilities of the various

environments where the data and applications are located to perform the actual

movement of data, if necessary, including schedulers, database monitors and trig-

gers, business process and transaction management middleware, and other process

and data movement utilities.

Data integration hubs
Figure 22.5 depicts the components of a big data environment.

Managing data integration through hubs helps to simplify management of the

organization’s interfaces. Data Hubs can bring the number of interfaces from being

Business intelligence tools
Direct users

Applications

Data consumers

SQL, XQuery, JSON, web services

Data virtualization server

Data sources

FIGURE 22.4

Data Virtualization Server.
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an exponential function of the number of applications to being a linear function of

the number of applications. The business-oriented hubs of master data, data ware-

housing, and data archiving strongly support making enable management of the

portfolio of application interfaces. The hubs depicted in Figure 22.5 are known by

the business areas; this is in contrast to the hub-and-spoke approach to real-time

data integration, which is a more technical approach to managing interfaces and

may not be known outside of the information technology organization.

Master data
Master data is the critical key data in the organization such as customers, pro-

ducts, employees, vendors, financial accounts, and reference data. A master data

hub provides a central location for managing and providing master data to the

organization. A master data hub that is supported using batch data integration can

provide support for business intelligence and reporting functions, but usually it is

necessary to have real-time data integration to support managing master data and

supplying updates to operational applications.
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FIGURE 22.5

Big Data Architecture.
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Data warehouse and operational data store
Data warehouses are an integrated hub of data that can be used to support busi-

ness analysis and reporting. Many organizations actually implement multiple data

warehouses to support different geographies or functions within the organization.

Again, a data warehouse helps to make data integration in an organization man-

ageable by providing a central hub of data to be used for reporting and analysis.

All the consumers who want to access that data can get it from a single place

rather than having to go to various operational applications directly.

Data warehouses are usually updated using batch data integration, and if real-

time consolidated information is needed, then an operational data store would be

created which would consolidate operational application data using real-time data

integration.

Enterprise content management
Unstructured data objects such as documents, images, audio, and video may be

managed through a central enterprise content management repository. This type

of repository serves the same purpose as the structured data hubs, by enabling

consolidated management of many types of unstructured data across the

organization.

Data archive
When data is no longer needed for operational processing, it may be more cost

effective to archive the data for some period of time to a less expensive data store

until it is certain that the organization no longer needs it or while it is required to

be maintained by regulations. Data archival may also be necessary when an appli-

cation is retired or replaced.

Data backups are specific to a particular application, technology, and

schema, and may not be easily recoverable if the data structures are modified or

the application is no longer in operation. Additionally, providing a central capa-

bility that will manage archived data and make it accessible across all the appli-

cations in the organization and various data types is more cost effective and

flexible.

Metadata management
Metadata management is becoming a critical capability within data integration

and within most data management areas. Metadata allows the linking or integra-

tion of structured and unstructured data types together. Also, it is quickly becom-

ing impossible to hand-craft metadata with the volumes and types of data being

managed, and it is becoming a necessity to have tools that can automatically
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create much of the needed metadata, and not just capture the metadata created

during the development and operation processes.

Data discovery
Data discovery is becoming a necessary capability as the volume of data in orga-

nizations is growing exponentially, making it almost impossible to know in

advance the full impact of potential changes, development, or interest.

The most advanced data discovery products can identify where data is located

using the names of fields and tags, as well as the actual content of the data

structures.

Data profiling
Data profiling is a required function in advance of every data-related development

project.

Once the general location of the data of interest has been identified, it is abso-

lutely essential that data profiling be performed on the actual production data.

Without data profiling, it cannot be reasonably assured that the data in question is

fit for the purpose intended, nor can one have a reasonable estimate of the effort

needed to develop the requested data integration solution.

Data-profiling tools will automatically perform the standard assessments and

provide reports. Further analysis against the proposed source or target data can

then be performed.

Data modeling
Almost certainly, central to the organization’s data integration strategy is the crea-

tion of a canonical data model or common central data model providing the

common format to which all the application interfaces will be transformed. This

hub-and-spoke technique can change the data integration problem from an expo-

nential function of the number of applications in the organization to a linear func-

tion, potentially making the number of interfaces a manageable problem. The

interfaces and messages and views necessary for implementation of the data inte-

gration solutions all have to be modeled.

Most data-modeling tools that are used for relational data modeling may be

used for the development of a canonical model, or the development tools for the

integration solutions may also provide this capability.

Data flow modeling
The flow of data between the applications and organizations needs to be designed

and documented for all data integration solutions in batch and real time, for both

structured and unstructured data.
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This capability may be available within the data integration engines, but it is

also necessary to have an integrated view of the data flow across all the integra-

tion engines, interfaces, and applications.

Metadata repository
Metadata is the core of data integration solutions. It describes the structure of the

sources, targets, and intermediate points, as well as the business meaning, the

technical structure and transformation, and the origin of the data and how it was

transformed.

Every tool and engine described above has its own metadata repository. Some

but not all of these repositories can share metadata between them.

One last technology investment that should be considered in a data integration

strategy is a central metadata repository that pulls all the metadata together. This

can be a significant investment cost, for both the purchase and ongoing operation

of an enterprise metadata repository. However, it has been demonstrated that such

a repository provides an excellent way to govern data across the organization,

provide both a business and technical view of the organization’s data assets, and

show an audit trail of data lineage suitable for regulatory reporting requirements.

The end
Data integration as an area of data management technology has tended to be

somewhat neglected. This is understandable inasmuch as data integration solu-

tions operate between areas of responsibility—that is, between applications—and

so it has been difficult to identify to whom responsibility for the interfaces

between applications and organizations should belong.

Without central planning for data movement and data integration in an organi-

zation, and without a data integration strategy, the organization will quickly be

faced with an overwhelming and unmanageable number of interfaces. It is criti-

cally important for every organization to implement some central planning for

data integration using data hubs and a canonical data model in order to be able to

reasonably manage the portfolio of data interfaces between applications and other

organizations.
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