
www.progress.com

DEPLOYMENT
ARCHITECTURE FOR
MICROSOFT.NET
ENVIRONMENTS

http://www.progress.com/?cmpid=OTC-PDF
http://www.progress.com

www.progress.com

TABLE OF CONTENTS

Introduction 1

Progress® Corticon® Product Architecture 1

Deployment Options 2

Option 1: Remote Server 3

Option 2: In-Process Server 3

Corticon Server Installation Options 4

Invoking Corticon Decision Services 4

Messaging 4

Request Message 4

Response Message 4

Using Service Contracts (WSDLS or SML Schemas) 5

Corticon Rule Engine 5

Enterprise Data Connectivity 6

Multi-Threading and Concurrency 6

Clustering and Load Balancing 7

Summary 8

About Progress Corticon 8

http://www.progress.com/?cmpid=OTC-PDF

1

www.progress.com

INTRODUCTION
The Progress® Corticon® Business Rules Management System (Corticon BRMS) fits naturally
in today’s service-oriented architectures (SOA), deploying as a service, and leverages the
enterprise-class performance, scalability, and high-availability features of leading application
servers It has been designed to support standards critical to enterprise customers building and
integrating composite applications The Progress Corticon Server is the patented “no-coding”
rules engine for Corticon BRMS, with performance unmatched in the industry
This document describes Corticon Server NET runtime architecture with particular emphasis on
how Corticon Server fits within various enterprise environment

PROGRESS® CORTICON® PRODUCT ARCHITECTURE
The Corticon BRMS consists of a set of rule modeling tools (Corticon Studio) and deployment tools
(Corticon Deployment Console), along with a highly scalable execution environment (Corticon
Server NET) The business rules are modeled as rule sets and deployed as Corticon decision
services

Client applications call decision services to apply decision-making logic (i e , business rules) as
needed within the application flow These fully encapsulated decision services can be invoked as
web services or in-process depending on technical requirements

A single instance of Corticon Server NET can supply decision services to diverse client
applications Figure 1 illustrates the Corticon BRMS architecture for NET environments

Figure 1
Corticon product architecture for
.NET environments

ENTERPRISE DATA SOURCES

POLICY MAKERS
BUSINESS AND IT

ENTERPRISE
APPLICATIONS

MICROSOFT WINDOWS

MICROSOFT .NET

MICROSOFT IIS

PROGRESS CORTICON
SERVER.NET

ENTERPRISE DATA CONNECTOR

PROGRESS CORTICON
STUDIO

PROGRESS CORTICON
DEPLOYMENT CONSOLE

WEB SERVICE

http://www.progress.com/?cmpid=OTC-PDF

2

www.progress.com

Consider the following:

1 Each decision service encapsulates the logic of a single decision-making activity (e g ,
calculate a rate, verify a claim, accept an applicant) Corticon Studio provides tools
to analyze and test the logic, ensuring that it is complete and unambiguous; it always
provides one, and only one, correct answer

2 Corticon Server NET may be deployed in Microsoft’s Internet Information Services
(IIS) or may be called in-process from a NET client application

3 Decision services may be deployed into Corticon Server NET using a Corticon
Deployment Descriptor (CDD) or via Corticon Server NET APIs All necessary
deployment artifacts, including the executable services and WSDLs, can be generated
by Corticon tools Client-side proxy classes can be generated by using the NET
framework utility programs

4 Client applications include any business program that uses decision services or
business process management (BPM) systems that manage many activity steps in a
business process flow

5 Client applications invoke Corticon decision services by first constructing an XML
message or by creating a collection of NET business objects that contain business
facts The client application communicates this information to Corticon Server NET
via WCF, ASP NET or an in-process call

DEPLOYMENT OPTIONS
Corticon decision services conform to SOA Each decision service:

 � Automates a business decision-making activity

 � Is implemented by a set of business rules

 � Is managed by software developers or business analysts

 � In each enterprise, the application architect needs to determine:

 � How decision services become part of the enterprise architecture

 � Which applications utilize decision services

 � How client applications will invoke the decision services

These choices depend on the current and future technical requirements of the enterprise
The available options are summarized in the following table and addressed in detail below:

CORTICON DEPLOYMENT
OPTION

APPROPRIATE
FOR

MESSAGING
OPTIONS

Option 1: Remote
Server Application
Server: IIS applications
invoke decision services
remotely as web
services

 � Service-oriented
architectures

 � Distributed architectures

 � Rule modernizing legacy
systems with ability to make
calls to remote decision
services

 � XML

 � SOAP

 � REST/JSON

 � WCF

 � ASP NET

Option 2: In-process
Server: Applications
invoke decision services
directly via Corticon
Server NET APIs

 � Systems that require the
fastest possible performance

 � Systems that require tight
coupling of client application
with the Corticon Server

 � XML

 � NET objects

http://www.progress.com/?cmpid=OTC-PDF

3

www.progress.com

OPTION 1: REMOTE SERVER
This option requires the Corticon Server NET to be deployed in Microsoft Internet
Information Services (IIS) Decision services can be invoked as web services using one
of the following protocols: SOAP, REST/JSON, WCF, and ASP NET To prepare for web
services deployment, the Corticon Deployment Console is used to generate CDDs (Corticon
Deployment Descriptor files) and WSDLs/XSDs (service contracts)

A CDD is an optional deployment descriptor file which defines a set of decision services
to be deployed in Corticon Server NET The CDD specifies the locations of rule sets,
performance-related parameters and other administrative details that the server needs to
effectively deploy the decision services A WSDL/XSD is effectively a service contract for a
decision service Each decision service has a WSDL/XSD that defines the decision service’s
expected inputs and outputs

Utility programs included in NET Framework can transform WSDLs into WCF or ASP
NET client-side proxy classes Client applications can incorporate these proxy classes to
communicate with Corticon Server NET Alternatively, client applications can forgo proxies
and construct custom-tailored SOAP messages as long as those messages conform to
WSDL specifications or use REST/JSON

OPTION 2: IN-PROCESS SERVER
Client applications can invoke decision services and perform administrative functions
in-process via the Corticon Server NET API This option can deliver high performance but
lacks the flexibility and loose coupling that web services can provide

Figure 2
Corticon Server .NET deployed
in IIS

CUSTOM
APPLICATIONSMICROSOFT IIS

PROGRESS CORTICON SERVER .NET

ASP .NET

WCF

SOAP

REST/JSON

Figure 3
Corticon Server .NET deployed
in-process

CUSTOM
APPLICATIONS

.NET CLR

PROGRESS CORTICON SERVER .NET

.NET OBJECTS

REQUEST

MESSAGE

.NET
APIs

XML

http://www.progress.com/?cmpid=OTC-PDF

4

www.progress.com

Using Corticon Server as a NET in-process component, client applications have the option
to communicate via XML or NET objects written in any NET language such as C# or Visual
Basic Using NET objects can yield superior performance by eliminating XML translation
overhead

CORTICON SERVER INSTALLATION OPTIONS
Corticon Server NET can be set up to run in Microsoft IIS by installing it in a dedicated IIS
virtual directory Alternatively, the Corticon NET assemblies can be installed directly into
any desired location for in-process use

INVOKING CORTICON DECISION SERVICES
Once Corticon decision services have been loaded into Corticon Server NET, they are ready
to be invoked by client applications The integration approach differs depending upon the
selected deployment option The service requests contain rich payloads that can be either
carried via XML or NET objects The contents of the payloads are analyzed in more depth
below

MESSAGING
Messaging between a client application and a decision service is conceptually identical
across deployment approaches, regardless of the transport protocol used

1 The client application sends a request message to the Corticon Server, containing a
payload of data and targeted at a specific decision service

2 The Corticon Server invokes the appropriate decision service, which processes its rules
against the request payload

3 When the rules processing is complete, the Corticon Server returns a response
message

REQUEST MESSAGE
The request message consists of data to be sent to the rules engine The payload is a
collection of application-specific entity instances that are defined in the user’s vocabulary
Entity instances may have any number of attributes and may have associations with other
entity instances The collection of entity instances are the facts upon which the rules
engine operates

RESPONSE MESSAGE
The response message payload includes two discrete sets of data: the data payload and
posted messages The data payload contains a copy of the incoming data that has been
updated as a consequence of rules firing Entity instances may be created, updated or
removed In addition, associations between entity instances may be created or removed In
other words, the response message data payload reflects the state of the decision service
working memory after all rules have fired

Posted messages contain an audit trail of rules fired by the decision service during the
processing of the request, including the sequence of firing The messages are posted using
natural-language rule statements

http://www.progress.com/?cmpid=OTC-PDF

5

www.progress.com

USING SERVICE CONTRACTS (WSDLS OR XML SCHEMAS)

The Corticon request and response messages must adhere to the message structure
and data specification as defined in the service contracts The service contracts can be
generated for each Corticon decision service (one service contract per decision service)
using the Corticon Deployment Console, as either WSDL or XML schema files (XSDs)
Service contracts are helpful integration specifications used by application developers to
assemble services into larger applications

WSDL is used when the customer has chosen web services architecture The WSDL file
defines a complete interface description, including:

 � Decision service name

 � Request message structure

 � Response message structure

 � SOAP envelope and binding information

XSDs can be used in conjunction with the NET in-process deployment option The XSD
file is identical to the WSDL file minus the SOAP envelope and binding information When
using XML payloads, the XSD file defines the necessary structure of the XML document
(i e , the XML document can be validated against the XSD using a validating parser)

You also have the option to use REST/JSON for executing decision services, in which case
you do not have to adhere to a service contract

CORTICON RULE ENGINE
Corticon Server employs an engine that has been built specifically to address the needs
of business decision automation within the context of a business process In decision
automation, efficient processing of business rules and consistent results are essential to
achieve fully automated straight-through-processing (“STP”)

Most rule engines analyze rules during execution This means significant processing
is taking place when systems are looking for an answer from the rules system The
traditional pattern matching algorithm to efficiently process and execute rules is Rete
Rete-based inference algorithms are built to address the needs of expert systems in
which rules are used for decision support, not decision automation In those systems a
person typically queries a large rule base with a question, and the system converges on
zero or more (sometimes conflicting) answers Because a human interprets the results,
logical inconsistencies (such as no answers, or conflicting answers) are tolerated and,
in fact, architecturally required In order to achieve STP, decision automation requires
consistent answers (i e , guaranteed, conflict-free results) each and every time because
typically no human expert is available to be the final arbiter

Furthermore, Rete-based inference engines are designed to allow individual rules to be
dynamically added or removed to/from the rule base, as this is a requirement for expert
systems Using a one-activated-rule-at-a-time process to support its dynamic conflict
resolution architecture, the Rete algorithm inherently produces a processing bottleneck
While Rete scales well with an increasing number of rules, it degrades exponentially
with the increasing complexity of data, resulting in a performance scalability problem
well known as the “Rete wall ” Corticon took a radically different approach for decision
automation Decision services, which are made up of sets of rules, are deployed/
undeployed as a unit, so the rule engine does not need to support dynamic tweaking of
individual rules

http://www.progress.com/?cmpid=OTC-PDF

6

www.progress.com

The Corticon engine was designed from the ground-up for decision automation, not
decision support Since Corticon Studio helps the rule author identify and resolve
logical conflicts during the rule modeling phase, the Corticon engine’s smart compilers
automatically generate optimal processing sequences for any decision service This
results in a best-of-both-worlds solution as Corticon delivers blazing performance that
scales linearly with both the number of rules and the complexity of the data

Corticon decision service execution is stateless, where all state is maintained in the
message payloads A single incoming message payload seeds the engine working memory
after which rules processing commences Once rules processing ceases, the final state
of the engine working memory is returned as an outgoing message payload, along with an
association rule audit log

ENTERPRISE DATA CONNECTIVITY
Corticon supports two distinct modes of operation:

1 Requiring the client program to supply all input data as specified by the service
contract

2 Allowing Corticon Server NET with EDC (enterprise data connectivity) to dynamically
access data in an enterprise data source (e g , relational database) as needed during
execution

In the first mode of operation, the rule author can decide what information must be passed
to the decision service This is done through a combination of the vocabulary, the rules
written using that vocabulary, and the service contract, which specifies the data elements
required to process a particular decision service

In the second mode of operation, the client application can supply primary key information
in the request message while the rules engine dynamically retrieves (and optionally
updates) additional information in an enterprise data source For example, in a loan pricing
application, the client may supply the ID of a loan applicant, and, based on rules, the engine
may automatically retrieve the applicant’s payment history in order to infer new facts such
as loan risk Since the client application supplies only the minimum necessary information,
this mode results in looser coupling between the client and the server; rules that refer
to enterprise data can evolve freely without affecting the decision service contract or
client program logic Additionally, this mode is very useful when it is difficult to collect in
advance all the data necessary to make a decision or if the amount of data required can be
substantial in size and difficult to pass into the decision service

In either mode of operation, rules are authored in precisely the same manner Enterprise
mapping specifications are declared in the vocabulary, but those mappings are transparent
to the rule author This key advantage can reduce costs associated with developing and
maintaining enterprise rules which require data access Traditional rule engines typically
require technical skills to code database connectivity and the use of SQL to query the
database

MULTI-THREADING AND CONCURRENCY
Each incoming request message is processed in its own thread of execution: that is, each
decision service instance runs in a separate thread The Corticon Server does not spawn
any threads and does not perform thread management; rather, the thread of execution

http://www.progress.com/?cmpid=OTC-PDF

7

www.progress.com

is established and managed by the enclosing container that receives the request (i e ,
Microsoft IIS) In cases where an in-process call is made from the client application, the
thread of Corticon execution is the same one in which the client runs

When the Corticon Deployment Console is used, the person responsible for deployment
decides how many instances of the same decision service may run concurrently This is
called the “decision service pool ” Different decision services may have different pool sizes
in the same Corticon Server depending on their individual load requirements

CLUSTERING AND LOAD BALANCING
In large-volume scenarios, enterprises will typically deploy multiple IIS Servers as a cluster
Corticon Server NET, as a well-behaved, IIS-managed web service, can leverage this
capacity to scale In addition, a variety of means exist to spread the incoming workload
across the multiple IIS Servers

Illustrations of the Corticon Server in active/passive (Figure 4) and active/active (Figure 5)
clustering configurations are shown below

Figure 5
Corticon Server .NET with active/
active clustering

CUSTOM
APPLICATIONS

PRODUCTION SERVERS

LOAD BALANCER MESSAGE

Figure 4
Corticon Server .NET with active/
passive clustering

CUSTOM
APPLICATIONS

PRODUCTION SERVERS

MESSAGELOAD BALANCER

ONLY IF PRODUCTION
SERVERS FAILS

WARM STANDBY

http://www.progress.com/?cmpid=OTC-PDF

8

www.progress.com

PROGRESS SOFTWARE
Progress Software Corporation (NASDAQ: PRGS) is a global software company that simplifies the development, deployment and management of business applications on-
premise or in the cloud, on any platform or device, to any data source, with enhanced performance, minimal IT complexity and low total cost of ownership

WORLDWIDE HEADQUARTERS
Progress Software Corporation, 14 Oak Park, Bedford, MA 01730 USA Tel: +1 781 280-4000 Fax: +1 781 280-4095 On the Web at: www progress com

Find us on facebook com/progresssw twitter com/progresssw youtube com/progresssw

For regional international office locations and contact information, please go to www progress com/worldwide

Progress and Corticon are trademarks or registered trademarks of Progress Software Corporation or one of its affiliates or subsidiaries in the U S and other countries Any
other marks contained herein may be trademarks of their respective owners Specifications subject to change without notice © 2011-2014 Progress Software Corporation
All rights reserved

Rev 06/14 | 140623-0065

SUMMARY
The Corticon Server NET supports a variety of enterprise deployment options Corticon
Server’s architecture is well-suited for enterprise environments, leveraging the inherent
scalability, availability, and manageability of Microsoft’s IIS

Corticon-based applications can easily adjust to changes in the business landscape and
can help organizations achieve the benefits of a service-oriented architecture

ABOUT PROGRESS CORTICON
Progress Corticon is the Business Rules Management System (BRMS) that delivers
highquality, high-fidelity, high-performance automated business decisions It helps
increase agility of decision change processes, and enables new insights into the
connections between individual recurring decisions and business performance Corticon
separates decisions from processes, helping both business and IT users to quickly create
or reuse business rules as well as create, improve, collaborate on, and maintain decision
logic Corticon is the market-leading platform for automating and executing business
changes used by over 500 customers worldwide Customers such as eBay, Commonwealth
of Pennsylvania, Unum, Adobe and DBS (Development Bank of Singapore) have realized
significant bottom- and top-line results using Corticon to improve decision automation,
decision change processes and decision-related insights

http://www.progress.com/?cmpid=OTC-PDF
http://www.progress.com/?cmpid=OTC-PDF
http://www.facebook.com/progresssw
http://www.twitter.com/progresssw
http://www.youtube.com/progresssw
http://www.progress.com/worldwide/?cmpid=OTC-PDF

